An adaptive evolutionary algorithm with intelligent mutation local searchers for designing multidrug therapies for HIV

Abstract This paper proposes a novel Memetic Algorithm consisting of an Adaptive Evolutionary Algorithm (AEA) with three Intelligent Mutation Local Searchers (IMLSs) for designing optimal multidrug Structured Treatment Interruption (STI) therapies for Human Immunodeficiency Virus (HIV) infection. The AEA is an evolutionary algorithm with a dynamic parameter setting. The adaptive use of the local searchers helps the evolutionary process in the search of a global optimum. The adaptive rule is based on a phenotypical diversity measure of the population. The proposed algorithm has been tested for determining optimal 750-day pharmacological protocols for HIV patients. The pathogenesis of HIV is described by a system of differential equations including a model for an immune response. The multidrug therapies use reverse transcriptase inhibitor and protease inhibitor anti-HIV drugs. The medical protocol designed by the proposed algorithm leads to a strong immune response; the patient reaches a “healthy” state in one and half years and after this the STI medications can be discontinued. A comparison with a specific heuristic method and a standard Genetic Algorithm (GA) has been performed. Unlike the heuristic, the AEA with IMLSs does not impose any restrictions on the therapies in order to reduce the dimension of the problem. Unlike the GA, the AEA with IMLSs can overcome the problem of premature convergence to a suboptimal medical treatment. The results show that the therapies designed by the AEA lead to a “healthy” state faster than with the other methods. The statistical analysis confirms the computational effectiveness of the algorithm.

[1]  A. E. Eiben,et al.  Hybridisation with Other Techniques: Memetic Algorithms , 2003 .

[2]  Jim Smith,et al.  Modelling gas with self adaptive mutation rates , 2001 .

[3]  Jim Smith,et al.  Operator and parameter adaptation in genetic algorithms , 1997, Soft Comput..

[4]  B. Adams,et al.  Dynamic multidrug therapies for hiv: optimal and sti control approaches. , 2004, Mathematical biosciences and engineering : MBE.

[5]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[6]  M. El-Sharkawi,et al.  Introduction to Evolutionary Computation , 2008 .

[7]  Shigui Ruan,et al.  Mathematical Biology Digital Object Identifier (DOI): , 2000 .

[8]  Sancho Salcedo-Sanz,et al.  A Hybrid Neural-Genetic Algorithm for the Frequency Assignment Problem in Satellite Communications , 2005, Applied Intelligence.

[9]  Alan S Perelson,et al.  HIV-1 infection and low steady state viral loads , 2002, Bulletin of mathematical biology.

[10]  A. Perelson,et al.  Dynamics of HIV infection of CD4+ T cells. , 1993, Mathematical biosciences.

[11]  Kalyanmoy Deb,et al.  Understanding Interactions among Genetic Algorithm Parameters , 1998, FOGA.

[12]  G. M. Ortiz,et al.  Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection , 2000, AIDS.

[13]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 : Advanced Algorithms and Operators , 2000 .

[14]  H. Schattler,et al.  On optimal controls for a general mathematical model for chemotherapy of HIV , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[15]  P. Preux,et al.  PreventingPrematureConvergencevia CooperatingGenetic Algorithms , 1997 .

[16]  M. Nowak,et al.  Specific therapy regimes could lead to long-term immunological control of HIV. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Hulin Wu,et al.  Deterministic And Stochastic Models Of Aids Epidemics And Hiv Infections With Intervention , 2005 .

[18]  S. S. Wilks Statistical Prediction with Special Reference to the Problem of Tolerance Limits , 1942 .

[19]  A.R. Teel,et al.  HIV treatment scheduling via robust nonlinear model predictive control , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[20]  Guanrong Chen,et al.  Feedback control of a biodynamical model of HIV-1 , 2001, IEEE Transactions on Biomedical Engineering.

[21]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[22]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[23]  James E. Baker,et al.  Adaptive Selection Methods for Genetic Algorithms , 1985, International Conference on Genetic Algorithms.

[24]  B. Adams,et al.  HIV dynamics: Modeling, data analysis, and optimal treatment protocols , 2005 .

[25]  Pini Gurfil,et al.  Optimal control of HIV infection with a continuously-mutating viral population , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[26]  Hem Raj Joshi,et al.  Optimal control of an HIV immunology model , 2002 .

[27]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[28]  Kevin Kok Wai Wong,et al.  Classification of adaptive memetic algorithms: a comparative study , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[29]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[30]  Ryan Zurakowski,et al.  A model predictive control based scheduling method for HIV therapy. , 2006, Journal of theoretical biology.

[31]  Mark Sumner,et al.  A Fast Adaptive Memetic Algorithm for Online and Offline Control Design of PMSM Drives , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[32]  George D. Magoulas,et al.  Neural network-based colonoscopic diagnosis using on-line learning and differential evolution , 2004, Appl. Soft Comput..

[33]  Giuseppe Acciani,et al.  Prudent-Daring vs Tolerant Survivor Selection Schemes in Control Design of Electric Drives , 2006, EvoWorkshops.

[34]  David B. Fogel,et al.  Tuning Evolutionary Programming for Conformationally Flexible Molecular Docking , 1996, Evolutionary Programming.

[35]  Zbigniew Michalewicz,et al.  GAVaPS-a genetic algorithm with varying population size , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[36]  D. Wodarz,et al.  Helper-dependent vs. helper-independent CTL responses in HIV infection: implications for drug therapy and resistance. , 2001, Journal of theoretical biology.

[37]  Larry J. Eshelman,et al.  The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional Genetic Recombination , 1990, FOGA.

[38]  William M. Spears,et al.  The role of mutation and recombination in evolutionary algorithms , 1998 .

[39]  Harvey Thomas Banks,et al.  A state‐dependent Riccati equation‐based estimator approach for HIV feedback control , 2006 .

[40]  A.R. Teel,et al.  Utilizing alternate target cells in treating HIV infection through scheduled treatment , 2004, Proceedings of the 2004 American Control Conference.

[41]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[42]  Hans-Paul Schwefel,et al.  Evolution and Optimum Seeking: The Sixth Generation , 1993 .

[43]  John M. Neuberger,et al.  A minmax principle, index of the critical point, and existence of sign-changing solutions to elliptic boundary value problems , 1998 .

[44]  Martin A Nowak,et al.  Mathematical models of HIV pathogenesis and treatment. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[45]  Jim Smith,et al.  A Memetic Algorithm With Self-Adaptive Local Search: TSP as a case study , 2000, GECCO.

[46]  L. Darrell Whitley,et al.  The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.

[47]  James R. Wilson,et al.  Empirical Investigation of the Benefits of Partial Lamarckianism , 1997, Evolutionary Computation.

[48]  D. Kirschner,et al.  Predicting differential responses to structured treatment interruptions during HAART , 2004, Bulletin of mathematical biology.

[49]  D. G. Beech,et al.  Handbook of Statistical Tables. , 1962 .

[50]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[51]  S. Lenhart,et al.  OPTIMIZING CHEMOTHERAPY IN AN HIV MODEL , 1998 .

[52]  David B. Fogel,et al.  An Introduction to Evolutionary Computation , 2022 .

[53]  José Álvarez-Ramírez,et al.  Feedback Control of the chemotherapy of HIV , 2000, Int. J. Bifurc. Chaos.

[54]  Andrew R. Teel,et al.  Enhancing immune response to HIV infection using MPC-based treatment scheduling , 2003, Proceedings of the 2003 American Control Conference, 2003..

[55]  William E. Hart,et al.  Memetic Evolutionary Algorithms , 2005 .

[56]  J. Lisziewicz,et al.  Control of HIV despite the discontinuation of antiretroviral therapy. , 1999, The New England journal of medicine.

[57]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[58]  M. Nowak,et al.  Dynamic multidrug therapies for HIV: a control theoretic approach. , 2015, Journal of theoretical biology.

[59]  Thomas Bäck,et al.  The Interaction of Mutation Rate, Selection, and Self-Adaptation Within a Genetic Algorithm , 1992, PPSN.

[60]  Edmund K. Burke,et al.  Multimeme Algorithms for Protein Structure Prediction , 2002, PPSN.

[61]  Xiaohua Xia,et al.  When to initiate HIV therapy: a control theoretic approach , 2003, IEEE Transactions on Biomedical Engineering.

[62]  Natalio Krasnogor,et al.  Towards Robust Memetic Algorithms , 2005 .

[63]  Lawrence Davis,et al.  Adapting Operator Probabilities in Genetic Algorithms , 1989, ICGA.

[64]  Chung Choo Chung,et al.  Optimal Scheduling of Drug Treatment for HIV Infection : Continuous Dose Control and Receding Horizon Control , 2003 .

[65]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[66]  D. Kirschner,et al.  Optimal control of the chemotherapy of HIV , 1997, Journal of mathematical biology.

[67]  M. Araki,et al.  Two-Degree-of-Freedom PID Controllers , 2003 .

[68]  Alan S. Perelson,et al.  Mathematical Analysis of HIV-1 Dynamics in Vivo , 1999, SIAM Rev..

[69]  William E. Hart,et al.  Recent Advances in Memetic Algorithms , 2008 .

[70]  T. Yoneyama,et al.  Short and long period optimization of drug doses in the treatment of AIDS. , 2002, Anais da Academia Brasileira de Ciencias.

[71]  Andy J. Keane,et al.  Meta-Lamarckian learning in memetic algorithms , 2004, IEEE Transactions on Evolutionary Computation.