Nucleation of Waves in Excitable Media by Noise
暂无分享,去创建一个
[1] Jessica G. Gaines,et al. Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations , 2001, Math. Comput..
[2] Alvin Shrier,et al. Propagation through heterogeneous substrates in simple excitable media models. , 2002, Chaos.
[3] M. Freidlin. Random perturbations of reaction-difiusion equations: the quasi de-terministic approximation , 1988 .
[4] A. Winfree. Varieties of spiral wave behavior: An experimentalist's approach to the theory of excitable media. , 1991, Chaos.
[5] Richard E. Mortensen,et al. Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..
[6] E. Hausenblas. Approximation for Semilinear Stochastic Evolution Equations , 2003 .
[7] I. Gyöngy. Lattice Approximations for Stochastic Quasi-Linear Parabolic Partial Differential Equations driven by Space-Time White Noise II , 1999 .
[8] T. Shardlow. Numerical simulation of stochastic PDEs for excitable media , 2005 .
[9] T. Shardlow. Numerical methods for stochastic parabolic PDEs , 1999 .
[10] B. Gidas,et al. Symmetry and related properties via the maximum principle , 1979 .
[11] D. Barkley. A model for fast computer simulation of waves in excitable media , 1991 .
[12] B. Rozovskii,et al. Stochastic evolution equations , 1981 .
[13] T. Shardlow. Weak Convergence of a Numerical Method for a Stochastic Heat Equation , 2003 .
[14] Jack K. Hale,et al. Infinite dimensional dynamical systems , 1983 .
[15] J. M. Sancho,et al. Noise in spatially extended systems , 1999 .