Transition Metal Chalcogenides Quantum Dots: Emerging Building Blocks toward Solar-to-Hydrogen Conversion

[1]  Cui Lai,et al.  The Collision between g-C3 N4 and QDs in the Fields of Energy and Environment: Synergistic Effects for Efficient Photocatalysis. , 2023, Small.

[2]  Z. Mi,et al.  Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting , 2023, Nature.

[3]  Shuai Xu,et al.  Unexpected Insulating Polymer Maneuvered Solar CO2‐to‐Syngas Conversion , 2022, Advanced Functional Materials.

[4]  G. Zhong,et al.  Recent Progress of Metal Sulfide Photocatalysts for Solar Energy Conversion , 2022, Advanced materials.

[5]  Qiaoling Mo,et al.  Unleashing Insulating Polymer as Charge Transport Cascade Mediator , 2022, Advanced Functional Materials.

[6]  Y. Lvov,et al.  CdS Quantum Dots in Hierarchical Mesoporous Silica Templated on Clay Nanotubes: Implications for Photocatalytic Hydrogen Production , 2021, ACS Applied Nano Materials.

[7]  Fang‐Xing Xiao,et al.  Polymer‐Mediated Electron Tunneling Towards Solar Water Oxidation , 2021, Advanced Functional Materials.

[8]  P. Ekins,et al.  Unextractable fossil fuels in a 1.5 °C world , 2021, Nature.

[9]  M. Abdellah,et al.  Graphitic Carbon Nitride/CdSe Quantum Dot/Iron Carbonyl Cluster Composite for Enhanced Photocatalytic Hydrogen Evolution , 2021 .

[10]  Jiajie Fan,et al.  Synergism of tellurium-rich structure and amorphization of NiTe1+ nanodots for efficient photocatalytic H2-evolution of TiO2 , 2021 .

[11]  Cheng Wang,et al.  Metal–organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting , 2021, Nature Chemistry.

[12]  K. Butler,et al.  Linking in situ charge accumulation to electronic structure in doped SrTiO3 reveals design principles for hydrogen-evolving photocatalysts , 2020, Nature Materials.

[13]  D. Inoue,et al.  Controlling the dimension of the quantum resonance in CdTe quantum dot superlattices fabricated via layer-by-layer assembly , 2020, Nature Communications.

[14]  Adriana Zaleska-Medynska,et al.  Remarkable visible-light induced hydrogen generation with ZnIn2S4 microspheres/CuInS2 quantum dots photocatalytic system , 2020 .

[15]  Xu‐Bing Li,et al.  Per‐6‐Thiol‐Cyclodextrin Engineered [FeFe]‐Hydrogenase Mimic/CdSe Quantum Dot Assembly for Photocatalytic Hydrogen Production , 2020 .

[16]  Jiadong Zhou,et al.  A Tandem 0D/2D/2D NbS2 Quantum Dot/Nb2 O5 Nanosheet/g-C3 N4 Flake System with Spatial Charge-Transfer Cascades for Boosting Photocatalytic Hydrogen Evolution. , 2020, Small.

[17]  S. Qiao,et al.  Atomically dispersed Ni in cadmium-zinc sulfide quantum dots for high-performance visible-light photocatalytic hydrogen production , 2020, Science Advances.

[18]  Xu‐Bing Li,et al.  Site- and Spatial-Selective Integration of Non-noble Metal Ions into Quantum Dots for Robust Hydrogen Photogeneration , 2020, Matter.

[19]  Changfeng Wu,et al.  NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging , 2020, Nano Research.

[20]  T. Klimczuk,et al.  Synergy between AgInS2 quantum dots and ZnO nanopyramids for photocatalytic hydrogen evolution and phenol degradation. , 2020, Journal of hazardous materials.

[21]  Zhongyu Li,et al.  Novel triptycene-based microporous polymers decorated with Cd0.5Zn0.5S quantum dots to form 0D/3D heterojunction for efficient photocatalytic hydrogen evolution , 2020 .

[22]  F. Iskandar,et al.  On-demand tuning of charge accumulation and carrier mobility in quantum dot solids for electron transport and energy storage devices , 2020, NPG Asia Materials.

[23]  Jun Du,et al.  Spectroscopic insights into high defect tolerance of Zn:CuInSe2 quantum-dot-sensitized solar cells , 2020, Nature Energy.

[24]  K. Domen,et al.  Photocatalytic water splitting with a quantum efficiency of almost unity , 2020, Nature.

[25]  Yu Yu,et al.  Simultaneous Ni nanoparticles decoration and Ni doping of CdS nanorods for synergistically promoting photocatalytic H2 evolution , 2020, Applied Surface Science.

[26]  Yongming Guo,et al.  MoS2 quantum dots: synthesis, properties and biological applications. , 2020, Materials science & engineering. C, Materials for biological applications.

[27]  Caizhen Zhu,et al.  Cation/Anion Exchange Reactions toward the Syntheses of Upgraded Nanostructures: Principles and Applications , 2020 .

[28]  Tae Whan Kim,et al.  Biosynaptic devices based on chicken egg albumen:graphene quantum dot nanocomposites , 2020, Scientific Reports.

[29]  G. Zeng,et al.  Application of QD-MOF composites for photocatalysis: Energy production and environmental remediation , 2020 .

[30]  Jianping Gao,et al.  Enhanced photocatalytic hydrogen production of CdS embedded in cationic hydrogel , 2020, International Journal of Hydrogen Energy.

[31]  Fang‐Xing Xiao,et al.  Precise Tuning of Coordination Positions for Transition Metal Ions via Layer-by-Layer Assembly to Enhance Solar Hydrogen Production. , 2020, ACS applied materials & interfaces.

[32]  T. Krauss,et al.  Size dependence of photocatalytic hydrogen generation for CdTe quantum dots. , 2019, The Journal of chemical physics.

[33]  Bifen Gao,et al.  Polymeric carbon nitride hybridized by CuInS2 quantum dots for photocatalytic hydrogen evolution , 2019, Materials Letters.

[34]  Dae-Young Chung,et al.  Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes , 2019, Nature.

[35]  M. Solakidou,et al.  Efficient photocatalytic water-splitting performance by ternary CdS/Pt-N-TiO2 and CdS/Pt-N,F-TiO2: Interplay between CdS photo corrosion and TiO2-dopping , 2019, Applied Catalysis B: Environmental.

[36]  F. Kong,et al.  Hydrogel as a miniature hydrogen production reactor to enhance photocatalytic hydrogen evolution activities of CdS and ZnS quantum dots derived from modified gel crystal growth method , 2019, Chemical Engineering Journal.

[37]  Chaorong Li,et al.  MoS 2 Quantum Dots Modified Black Ti 3+ –TiO 2 /g‐C 3 N 4 Hollow Nanosphere Heterojunction toward Photocatalytic Hydrogen Production Enhancement , 2019, Solar RRL.

[38]  T. Majima,et al.  Efficient photocatalytic H2 evolution using NiS/ZnIn2S4 heterostructures with enhanced charge separation and interfacial charge transfer , 2019, Applied Catalysis B: Environmental.

[39]  Zhengquan Li,et al.  Boosting photocatalytic hydrogen generation of cadmium telluride colloidal quantum dots by nickel ion doping. , 2019, Journal of colloid and interface science.

[40]  Junying Chen,et al.  Novel ZnCdS Quantum Dots Engineering for Enhanced Visible-Light-Driven Hydrogen Evolution , 2019, ACS Sustainable Chemistry & Engineering.

[41]  K. Parida,et al.  Rational Design of a Coupled Confronting Z‐Scheme System Toward Photocatalytic Refractory Pollutant Degradation and Water Splitting Reaction , 2019, Advanced Materials Interfaces.

[42]  Zhanhang He,et al.  A novel MoS2 quantum dots (QDs) decorated Z-scheme g-C3N4 nanosheet/N-doped carbon dots heterostructure photocatalyst for photocatalytic hydrogen evolution , 2019, Applied Catalysis B: Environmental.

[43]  S. Yuan,et al.  In-situ growth of Zn–AgIn5S8 quantum dots on g-C3N4 towards 0D/2D heterostructured photocatalysts with enhanced hydrogen production , 2019, International Journal of Hydrogen Energy.

[44]  H. Cui,et al.  2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity , 2019, Applied Catalysis B: Environmental.

[45]  Yang Li,et al.  Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication , 2019, Nature Communications.

[46]  Fangxu Dai,et al.  Aqueous synthesis of core/shell/shell CdSe/CdS/ZnS quantum dots for photocatalytic hydrogen generation , 2019, Journal of Materials Science.

[47]  Xu‐Bing Li,et al.  Quantum Dot Assembly for Light‐Driven Multielectron Redox Reactions, such as Hydrogen Evolution and CO 2 Reduction , 2019, Angewandte Chemie.

[48]  T. Ishihara,et al.  Single-Electron-Trapped Oxygen Vacancy on Ultrathin WO3·0.33H2O {100} Facets Suppressing Backward Reaction for Promoted H2 Evolution in Pure Water Splitting. , 2019, The journal of physical chemistry letters.

[49]  Xiangying Meng,et al.  Metal-organic framework as nanoreactors to co-incorporate carbon nanodots and CdS quantum dots into the pores for improved H2 evolution without noble-metal cocatalyst , 2019, Applied Catalysis B: Environmental.

[50]  Scott S. Kolmar,et al.  Concerted proton-electron transfer reactions in the Marcus inverted region , 2019, Science.

[51]  Yi‐Jun Xu,et al.  Photocorrosion Inhibition of Semiconductor-Based Photocatalysts: Basic Principle, Current Development, and Future Perspective , 2019, ACS Catalysis.

[52]  Yan‐Zhen Zheng,et al.  One-step hydrothermal synthesis of high-percentage 1T-phase MoS2 quantum dots for remarkably enhanced visible-light-driven photocatalytic H2 evolution , 2019, Applied Catalysis B: Environmental.

[53]  Matthew M. Ackerman,et al.  Dual-band infrared imaging using stacked colloidal quantum dot photodiodes , 2019, Nature Photonics.

[54]  A. Abdel-Wahab,et al.  Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts , 2019, Catalysts.

[55]  Jingsheng Chen,et al.  Ag2S Quantum Dots as an Infrared Excited Photocatalyst for Hydrogen Production , 2019, ACS Applied Energy Materials.

[56]  Moritz F. Kuehnel,et al.  ZnSe Nanorods as Visible‐Light Absorbers for Photocatalytic and Photoelectrochemical H 2 Evolution in Water , 2019, Angewandte Chemie.

[57]  Hao Wu,et al.  Visible-Light-Induced Nanoparticle Assembly for Effective Hydrogen Photogeneration , 2019, ACS Sustainable Chemistry & Engineering.

[58]  Jiancheng Zhou,et al.  Synthesis of Amino-Functionalized Ti-MOF Derived Yolk–Shell and Hollow Heterostructures for Enhanced Photocatalytic Hydrogen Production under Visible Light , 2019, ACS Sustainable Chemistry & Engineering.

[59]  Dacheng Li,et al.  Room temperature synthesis of CdS/SrTiO3 nanodots-on-nanocubes for efficient photocatalytic H2 evolution from water. , 2019, Journal of colloid and interface science.

[60]  W. Zhou,et al.  Surface defect and rational design of TiO2−x nanobelts/ g-C3N4 nanosheets/ CdS quantum dots hierarchical structure for enhanced visible-light-driven photocatalysis , 2019 .

[61]  Shiqiang Wei,et al.  CdSe Quantum Dots/g-C3N4 Heterostructure for Efficient H2 Production under Visible Light Irradiation , 2018, ACS omega.

[62]  Cheng Cheng,et al.  Localized NiS2 Quantum Dots on g‐C3N4 Nanosheets for Efficient Photocatalytic Hydrogen Production from Water , 2018, ChemCatChem.

[63]  Meng Wang,et al.  Enhancing hydrogen generation via fabricating peroxide decomposition layer over NiSe/MnO2-CdS catalyst , 2018, Journal of Catalysis.

[64]  G. Patzke,et al.  Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots , 2018, Nature Communications.

[65]  Xu‐Bing Li,et al.  Semiconducting quantum dots for artificial photosynthesis , 2018, Nature Reviews Chemistry.

[66]  B. Su,et al.  Probing conducting polymers@cadmium sulfide core-shell nanorods for highly improved photocatalytic hydrogen production. , 2018, Journal of colloid and interface science.

[67]  M. Tadé,et al.  0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution , 2018, Applied Catalysis B: Environmental.

[68]  S. Dou,et al.  CoSe2 /MoSe2 Heterostructures with Enriched Water Adsorption/Dissociation Sites towards Enhanced Alkaline Hydrogen Evolution Reaction. , 2018, Chemistry.

[69]  Ke-Qin Zhang,et al.  MoS2 Quantum Dots@TiO2 Nanotube Arrays: An Extended-Spectrum-Driven Photocatalyst for Solar Hydrogen Evolution. , 2018, ChemSusChem.

[70]  Weidong Shi,et al.  In-situ construction of hierarchical CdS/MoS2 microboxes for enhanced visible-light photocatalytic H2 production , 2018 .

[71]  Jianpeng Shi,et al.  WS2 /Graphitic Carbon Nitride Heterojunction Nanosheets Decorated with CdS Quantum Dots for Photocatalytic Hydrogen Production. , 2018, ChemSusChem.

[72]  J. Hihath Charge transport in the inverted Marcus region , 2018, Nature Nanotechnology.

[73]  H. Gerritsen,et al.  Near-Infrared-Emitting CuInS2/ZnS Dot-in-Rod Colloidal Heteronanorods by Seeded Growth , 2018, Journal of the American Chemical Society.

[74]  Zuobin Wang,et al.  Fabrication of periodically micropatterned magnetite nanoparticles by laser-interference-controlled electrodeposition , 2018, Journal of Materials Science.

[75]  Guozhen Zhang,et al.  Efficient defect-controlled photocatalytic hydrogen generation based on near-infrared Cu-In-Zn-S quantum dots , 2018, Nano Research.

[76]  Rui Cao,et al.  Solar‐to‐Hydrogen Energy Conversion Based on Water Splitting , 2018 .

[77]  Jinjia Wei,et al.  NiSx Quantum Dots Accelerate Electron Transfer in Cd0.8Zn0.2S Photocatalytic System via an rGO Nanosheet “Bridge” toward Visible-Light-Driven Hydrogen Evolution , 2018 .

[78]  Qiang Wu,et al.  Synthesis of MoS2 quantum dots cocatalysts and their efficient photocatalytic performance for hydrogen evolution , 2018 .

[79]  H. Cui,et al.  Construction of Z-Scheme System for Enhanced Photocatalytic H2 Evolution Based on CdS Quantum Dots/CeO2 Nanorods Heterojunction , 2018 .

[80]  S. Luo,et al.  MoS2 Quantum Dot Growth Induced by S Vacancies in a ZnIn2S4 Monolayer: Atomic-Level Heterostructure for Photocatalytic Hydrogen Production. , 2017, ACS nano.

[81]  Xu‐Bing Li,et al.  Nonstoichiometric Cux Iny S Quantum Dots for Efficient Photocatalytic Hydrogen Evolution. , 2017, ChemSusChem.

[82]  S. Dash,et al.  Band alignment and charge transfer pathway in three phase anatase-rutile-brookite TiO2 nanotubes: An efficient photocatalyst for water splitting , 2017 .

[83]  W. Shi,et al.  Ag doping of Zn-In-S quantum dots for photocatalytic hydrogen evolution: Simultaneous bandgap narrowing and carrier lifetime elongation , 2017 .

[84]  S. Sultana,et al.  Controlled Synthesis of CeO2NS-Au-CdSQDs Ternary Nanoheterostructure: A Promising Visible Light Responsive Photocatalyst for H2 Evolution. , 2017, Inorganic chemistry.

[85]  Jinjia Wei,et al.  Spatial charge separation and transfer in ultrathin CdIn2S4/rGO nanosheet arrays decorated by ZnS quantum dots for efficient visible-light-driven hydrogen evolution , 2017 .

[86]  Wenhui Hu,et al.  Exceptionally Robust CuInS2/ZnS Nanoparticles as Single Component Photocatalysts for H2 Evolution , 2017 .

[87]  Zhiliang Jin,et al.  Peculiar synergetic effect of MoS2 quantum dots and graphene on Metal-Organic Frameworks for photocatalytic hydrogen evolution , 2017 .

[88]  Jerry J. Wu,et al.  Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications — A review , 2017 .

[89]  Jianpeng Shi,et al.  Highly Efficient Photocatalyst Based on a CdS Quantum Dots/ZnO Nanosheets 0D/2D Heterojunction for Hydrogen Evolution from Water Splitting. , 2017, ACS applied materials & interfaces.

[90]  Yuhan Sun,et al.  0D–2D Quantum Dot: Metal Dichalcogenide Nanocomposite Photocatalyst Achieves Efficient Hydrogen Generation , 2017, Advanced materials.

[91]  C. Tung,et al.  Self‐Assembled Au/CdSe Nanocrystal Clusters for Plasmon‐Mediated Photocatalytic Hydrogen Evolution , 2017, Advanced materials.

[92]  Yongjun Yuan,et al.  Bandgap engineering of (AgIn)xZn2(1−x)S2 quantum dot photosensitizers for photocatalytic H2 generation , 2017 .

[93]  K. Parida,et al.  Quantum dots as enhancer in photocatalytic hydrogen evolution: A review , 2017 .

[94]  Yang Yang,et al.  Make perovskite solar cells stable , 2017, Nature.

[95]  Ashley R. Marshall,et al.  Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100% , 2017, Nature Energy.

[96]  Yanyan Li,et al.  Multi-node CdS hetero-nanowires grown with defect-rich oxygen-doped MoS2 ultrathin nanosheets for efficient visible-light photocatalytic H2 evolution , 2017, Nano Research.

[97]  Jinlong Zhang,et al.  Efficient Solar Light Harvesting CdS/Co9 S8 Hollow Cubes for Z-Scheme Photocatalytic Water Splitting. , 2017, Angewandte Chemie.

[98]  T. Majima,et al.  Au/La2 Ti2 O7 Nanostructures Sensitized with Black Phosphorus for Plasmon-Enhanced Photocatalytic Hydrogen Production in Visible and Near-Infrared Light. , 2017, Angewandte Chemie.

[99]  David W. Wakerley,et al.  Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst , 2017, Nature Energy.

[100]  R. Shrivastav,et al.  Quantum dots sensitization for photoelectrochemical generation of hydrogen: A review , 2017 .

[101]  W. S. Teo,et al.  Recent Progress in Energy‐Driven Water Splitting , 2017, Advanced science.

[102]  Junhe Yang,et al.  Effects of sacrificial reagents on photocatalytic hydrogen evolution over different photocatalysts , 2017, Journal of Materials Science.

[103]  Yi Shi,et al.  Facile Sonication Synthesis of WS2 Quantum Dots for Photoelectrochemical Performance , 2017 .

[104]  Younan Xia,et al.  Seed-Mediated Growth of Colloidal Metal Nanocrystals. , 2017, Angewandte Chemie.

[105]  Xinchen Wang,et al.  Conjugated Polymers: Catalysts for Photocatalytic Hydrogen Evolution. , 2016, Angewandte Chemie.

[106]  M. Ersoz,et al.  Photocatalytic hydrogen evolution based on mercaptopropionic acid stabilized CdS and CdTeS quantum dots , 2016 .

[107]  Y. Hu,et al.  MoS2 as a co‐catalyst for photocatalytic hydrogen production from water , 2016 .

[108]  Yixin Zhao,et al.  CdTe/CdS Core/Shell Quantum Dots Cocatalyzed by Sulfur Tolerant [Mo3S13]2– Nanoclusters for Efficient Visible-Light-Driven Hydrogen Evolution , 2016 .

[109]  D. Griffiths Introduction to Quantum Mechanics , 2016 .

[110]  Caroline Sunyong Lee,et al.  Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability , 2016, Scientific Reports.

[111]  Fen Qiu,et al.  Photocatalytic Hydrogen Generation by CdSe/CdS Nanoparticles. , 2016, Nano letters.

[112]  Changwen Hu,et al.  Surface localization of CdZnS quantum dots onto 2D g-C3N4 ultrathin microribbons: Highly efficient visible light-induced H2-generation , 2016 .

[113]  Bin Chen,et al.  Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from [FeFe]-hydrogenase mimic and CdSe QDs in water , 2016, Scientific Reports.

[114]  E. Park,et al.  Size-confined fixed-composition and composition-dependent engineered band gap alloying induces different internal structures in L-cysteine-capped alloyed quaternary CdZnTeS quantum dots , 2016, Scientific Reports.

[115]  E. Selli,et al.  Size-dependent performance of CdSe quantum dots in the photocatalytic evolution of hydrogen under visible light irradiation , 2016 .

[116]  Xiaoguang Liu,et al.  Enhanced Performance of PbS-quantum-dot-sensitized Solar Cells via Optimizing Precursor Solution and Electrolytes , 2016, Scientific Reports.

[117]  L. Amirav,et al.  Stability of Seeded Rod Photocatalysts: Atomic Scale View , 2016 .

[118]  L. Manna,et al.  Forging Colloidal Nanostructures via Cation Exchange Reactions , 2016, Chemical reviews.

[119]  M. Liu,et al.  Constructing a MoS2 QDs/CdS Core/Shell Flowerlike Nanosphere Hierarchical Heterostructure for the Enhanced Stability and Photocatalytic Activity , 2016, Molecules.

[120]  T. Giannakopoulou,et al.  Effect of processing temperature on structure and photocatalytic properties of g-C3N4 , 2015 .

[121]  Ting Zhu,et al.  Semiconductor Nanocrystal Quantum Dot Synthesis Approaches Towards Large-Scale Industrial Production for Energy Applications , 2015, Nanoscale Research Letters.

[122]  M. Miyauchi,et al.  A PEDOT-coated quantum dot as efficient visible light harvester for photocatalytic hydrogen production , 2015 .

[123]  Tatsuya Kameyama,et al.  Controlling the Electronic Energy Structure of ZnS–AgInS2 Solid Solution Nanocrystals for Photoluminescence and Photocatalytic Hydrogen Evolution , 2015 .

[124]  Liejin Guo,et al.  Toward Facet Engineering of CdS Nanocrystals and Their Shape-Dependent Photocatalytic Activities , 2015 .

[125]  Ling Wu,et al.  Noble-metal-free MoS2 co-catalyst decorated UiO-66/CdS hybrids for efficient photocatalytic H2 production , 2015 .

[126]  Dan Song,et al.  Recent progress in enhancing solar-to-hydrogen efficiency , 2015 .

[127]  Z. Mi,et al.  Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays , 2015, Nature Communications.

[128]  Mietek Jaroniec,et al.  Polymeric Photocatalysts Based on Graphitic Carbon Nitride , 2015, Advanced materials.

[129]  S. Luo,et al.  Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution , 2015 .

[130]  C. Tung,et al.  Branched polyethylenimine improves hydrogen photoproduction from a CdSe quantum dot/[FeFe]-hydrogenase mimic system in neutral aqueous solutions. , 2015, Chemistry.

[131]  Y. Dwivedi,et al.  Structural and optical properties of Ni doped ZnSe nanoparticles , 2015 .

[132]  Ling Wu,et al.  Fabrication of hierarchical CdS nanosphere via one-pot process for photocatalytic water splitting , 2015, Journal of Nanoparticle Research.

[133]  R. Amal,et al.  Z-schematic water splitting into H2 and O2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator. , 2015, Journal of the American Chemical Society.

[134]  Xinchen Wang,et al.  Activation of n → π* Transitions in Two-Dimensional Conjugated Polymers for Visible Light Photocatalysis , 2014 .

[135]  Xiaoheng Liu,et al.  Loading of CdS nanoparticles on the (1 0 1) surface of elongated TiO2 nanocrystals for efficient visible-light photocatalytic hydrogen evolution from water splitting , 2014 .

[136]  R. Banerjee,et al.  Photocatalytic metal-organic framework from CdS quantum dot incubated luminescent metallohydrogel. , 2014, Journal of the American Chemical Society.

[137]  Bin Zhang,et al.  Nanoporous hollow transition metal chalcogenide nanosheets synthesized via the anion-exchange reaction of metal hydroxides with chalcogenide ions. , 2014, ACS nano.

[138]  Yimin Kang,et al.  Plasmonic Hot Electron Induced Structural Phase Transition in a MoS2 Monolayer , 2014, Advanced materials.

[139]  Dong Ju Han,et al.  Dual role of blue luminescent MoS2 quantum dots in fluorescence resonance energy transfer phenomenon. , 2014, Small.

[140]  P. P. Souza,et al.  "Green" colloidal ZnS quantum dots/chitosan nano-photocatalysts for advanced oxidation processes: Study of the photodegradation of organic dye pollutants , 2014 .

[141]  Yongdan Li,et al.  Cobalt sulfide quantum dots modified TiO2 nanoparticles for efficient photocatalytic hydrogen evolution , 2014 .

[142]  Jason M. Smith,et al.  Nanojunction-mediated photocatalytic enhancement in heterostructured CdS/ZnO, CdSe/ZnO, and CdTe/ZnO nanocrystals. , 2014, Angewandte Chemie.

[143]  K. Sayama,et al.  Codoping Effect of Sr and Ti for α-Fe2O3 Photocatalyst on Water Oxidation Utilizing IO3− as a Reversible Redox Ion under Visible Light , 2014 .

[144]  Jun Jiang,et al.  Integration of an Inorganic Semiconductor with a Metal–Organic Framework: A Platform for Enhanced Gaseous Photocatalytic Reactions , 2014, Advanced materials.

[145]  Jinhua Ye,et al.  MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. , 2014, ACS nano.

[146]  Jian Zhang,et al.  Stable hydrogen generation from vermiculite sensitized by CdS quantum dot photocatalytic splitting of water under visible-light irradiation. , 2014, Dalton transactions.

[147]  E. Palomares,et al.  Efficient and limiting reactions in aqueous light-induced hydrogen evolution systems using molecular catalysts and quantum dots. , 2014, Journal of the American Chemical Society.

[148]  M. Shaijumon,et al.  MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. , 2014, ACS nano.

[149]  Xu‐Bing Li,et al.  Photocatalytic hydrogen evolution from glycerol and water over nickel-hybrid cadmium sulfide quantum dots under visible-light irradiation. , 2014, ChemSusChem.

[150]  Chengbin Liu,et al.  Reduced graphene oxide and CdTe nanoparticles co-decorated TiO2 nanotube array as a visible light photocatalyst , 2014, Journal of Materials Science.

[151]  Prashant V. Kamat,et al.  Recent advances in quantum dot surface chemistry. , 2014, ACS applied materials & interfaces.

[152]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[153]  Yajun Wang,et al.  Pt nanoparticle and CdS quantum dot assisted WO3 nanowires grown on flexible carbon fibers for efficient oxygen production , 2014 .

[154]  N. Makarov,et al.  An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells , 2013, Nature Communications.

[155]  Li-ping Zhu,et al.  Shape control of colloidal Mn doped ZnO nanocrystals and their visible light photocatalytic properties. , 2013, Nanoscale.

[156]  Jiajing Zhou,et al.  Immobilizing CdS quantum dots and dendritic Pt nanocrystals on thiolated graphene nanosheets toward highly efficient photocatalytic H2 evolution. , 2013, Nanoscale.

[157]  Bin Zhang,et al.  Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. , 2013, Chemical communications.

[158]  Danzhen Li,et al.  A facile solvothermal method to produce ZnS quantum dots-decorated graphene nanosheets with superior photoactivity , 2013, Nanotechnology.

[159]  Frank E. Osterloh,et al.  Quantum confinement controls photocatalysis: a free energy analysis for photocatalytic proton reduction at CdSe nanocrystals. , 2013, ACS nano.

[160]  Can Li,et al.  Roles of cocatalysts in photocatalysis and photoelectrocatalysis. , 2013, Accounts of chemical research.

[161]  Chenghua Sun,et al.  Activation of Photocatalytic Water Oxidation on N-Doped ZnO Bundle-like Nanoparticles under Visible Light , 2013 .

[162]  Say Chye Joachim Loo,et al.  In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation , 2013 .

[163]  C. Mak,et al.  Facile hydrothermal synthesis of hydrotropic Cu2ZnSnS4 nanocrystal quantum dots: band-gap engineering and phonon confinement effect , 2013 .

[164]  Can Li,et al.  Photocatalytic overall water splitting promoted by an α-β phase junction on Ga2O3. , 2012, Angewandte Chemie.

[165]  Patrick L. Holland,et al.  Robust Photogeneration of H2 in Water Using Semiconductor Nanocrystals and a Nickel Catalyst , 2012, Science.

[166]  J. Xu,et al.  A Strategy of Enhancing the Photoactivity of g-C3N4 via Doping of Nonmetal Elements: A First-Principles Study , 2012 .

[167]  Yan-cheng Wang,et al.  Characterization of Oxygen Vacancy Associates within Hydrogenated TiO2: A Positron Annihilation Study , 2012 .

[168]  Pingwu Du,et al.  Photodriven charge separation dynamics in CdSe/ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production. , 2012, Journal of the American Chemical Society.

[169]  M. Amelia,et al.  Electrochemical properties of CdSe and CdTe quantum dots. , 2012, Chemical Society reviews.

[170]  Yucheng He,et al.  Enhanced photocatalytic activity of ZnO microspheres via hybridization with CuInSe₂ and CuInS₂ nanocrystals. , 2012, ACS applied materials & interfaces.

[171]  Lei Ge,et al.  Synthesis and Efficient Visible Light Photocatalytic Hydrogen Evolution of Polymeric g-C3N4 Coupled with CdS Quantum Dots , 2012 .

[172]  Jingshan Luo,et al.  Homogeneous Photosensitization of Complex TiO2 Nanostructures for Efficient Solar Energy Conversion , 2012, Scientific Reports.

[173]  J. F. Stoddart,et al.  Large-Pore Apertures in a Series of Metal-Organic Frameworks , 2012, Science.

[174]  J. Jang,et al.  Heterojunction semiconductors: A strategy to develop efficient photocatalytic materials for visible light water splitting , 2012 .

[175]  S. Evans,et al.  Determining the Concentration of CuInS2 Quantum Dots from the Size-Dependent Molar Extinction Coefficient , 2012 .

[176]  Aicheng Chen,et al.  Synthesis of CdS quantum-dot sensitized TiO2 nanowires with high photocatalytic activity for water splitting , 2012 .

[177]  Shigehiro Takahashi,et al.  Layer-by-layer construction of protein architectures through avidin–biotin and lectin–sugar interactions for biosensor applications , 2012, Analytical and Bioanalytical Chemistry.

[178]  Yong Wang,et al.  Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. , 2012, Angewandte Chemie.

[179]  Kazuhiko Maeda,et al.  Photocatalytic water splitting using semiconductor particles: History and recent developments , 2011 .

[180]  A. Alivisatos,et al.  Structural and electronic study of an amorphous MoS3 hydrogen-generation catalyst on a quantum-controlled photosensitizer. , 2011, Angewandte Chemie.

[181]  F. Osterloh,et al.  Sequestering High-Energy Electrons to Facilitate Photocatalytic Hydrogen Generation in CdSe/CdS Nanocrystals , 2011 .

[182]  Jiaguo Yu,et al.  Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. , 2011, Journal of the American Chemical Society.

[183]  Timothy F. O'Connor,et al.  The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals. , 2011, Nano letters.

[184]  C. Tung,et al.  A highly efficient photocatalytic system for hydrogen production by a robust hydrogenase mimic in an aqueous solution. , 2011, Angewandte Chemie.

[185]  Han Yang,et al.  Hybridized Nanowires and Cubes: A Novel Architecture of a Heterojunctioned TiO2/SrTiO3 Thin Film for Efficient Water Splitting , 2010 .

[186]  M. Kovalenko,et al.  Alkyl chains of surface ligands affect polytypism of cdse nanocrystals and play an important role in the synthesis of anisotropic nanoheterostructures. , 2010, Journal of the American Chemical Society.

[187]  Jun Zhang,et al.  Preparation and enhanced visible-light photocatalytic H2-production activity of CdS quantum dots-sensitized Zn1−xCdxS solid solution , 2010 .

[188]  Mei Wang,et al.  Hydrogen production by noble-metal-free molecular catalysts and related nanomaterials. , 2010, ChemSusChem.

[189]  A. Kudo,et al.  Solar hydrogen production over novel metal sulfide photocatalysts of AGa2In3S8 (A = Cu or Ag) with layered structures. , 2010, Chemical communications.

[190]  K. Domen,et al.  Modified Ta3N5 powder as a photocatalyst for O2 evolution in a two-step water splitting system with an iodate/iodide shuttle redox mediator under visible light. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[191]  P. El-Khoury,et al.  Ultrafast carrier dynamics in type II ZnSe/CdS/ZnSe nanobarbells. , 2010, ACS nano.

[192]  Wanlin Guo,et al.  Ultrasound-assisted microwave preparation of Ag-doped CdS nanoparticles. , 2010, Ultrasonics sonochemistry.

[193]  Yong‐Tae Kim,et al.  Electrochemical Synthesis of CdSe Quantum‐Dot Arrays on a Graphene Basal Plane Using Mesoporous Silica Thin‐Film Templates , 2010, Advanced materials.

[194]  M. Beller,et al.  Light-driven hydrogen generation: efficient iron-based water reduction catalysts. , 2009, Angewandte Chemie.

[195]  Hao Wang,et al.  Facile synthesis of ZnS nanostructured spheres and their photocatalytic properties , 2009 .

[196]  Mei Wang,et al.  Photochemical hydrogen production catalyzed by polypyridyl ruthenium-cobaloxime heterobinuclear complexes with different bridges , 2009 .

[197]  K. Domen,et al.  CdS Nanoparticles Exhibiting Quantum Size Effect by Dispersion on TiO2: Photocatalytic H2 Evolution and Photoelectrochemical Measurements , 2009 .

[198]  Liang Li,et al.  Core/Shell semiconductor nanocrystals. , 2009, Small.

[199]  Chunhai Fan,et al.  Microwave Synthesis of Water‐Dispersed CdTe/CdS/ZnS Core‐Shell‐Shell Quantum Dots with Excellent Photostability and Biocompatibility , 2008 .

[200]  Pingwu Du,et al.  A homogeneous system for the photogeneration of hydrogen from water based on a platinum(II) terpyridyl acetylide chromophore and a molecular cobalt catalyst. , 2008, Journal of the American Chemical Society.

[201]  Zhichun Si,et al.  Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO(2) nanocrystalline. , 2008, Journal of hazardous materials.

[202]  Robert A Dagle,et al.  Methanol steam reforming for hydrogen production. , 2007, Chemical reviews.

[203]  Shamindri M. Arachchige,et al.  Photocatalytic hydrogen production from water employing a Ru, Rh, Ru molecular device for photoinitiated electron collection. , 2007, Journal of the American Chemical Society.

[204]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[205]  G. Seifert,et al.  Metal-organic frameworks: structural, energetic, electronic, and mechanical properties. , 2007, The journal of physical chemistry. B.

[206]  B. Ferrer,et al.  Semiconductor behavior of a metal-organic framework (MOF). , 2007, Chemistry.

[207]  W. Shangguan Hydrogen evolution from water splitting on nanocomposite photocatalysts , 2007 .

[208]  H. Görls,et al.  A supramolecular photocatalyst for the production of hydrogen and the selective hydrogenation of tolane. , 2006, Angewandte Chemie.

[209]  Jiaguo Yu,et al.  Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts , 2005 .

[210]  Kazuhiko Maeda,et al.  GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. , 2005, Journal of the American Chemical Society.

[211]  D. Reinhoudt,et al.  Supramolecular layer-by-layer assembly: alternating adsorptions of guest- and host-functionalized molecules and particles using multivalent supramolecular interactions. , 2005, Journal of the American Chemical Society.

[212]  Jacob Bonde,et al.  Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. , 2005, Journal of the American Chemical Society.

[213]  Xiaogang Peng,et al.  Size-dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals. , 2005, Journal of the American Chemical Society.

[214]  Shi-Zhao Kang,et al.  "Green" synthesis of starch capped CdS nanoparticles , 2004 .

[215]  Shuming Nie,et al.  Quantum dots in biology and medicine , 2004 .

[216]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[217]  U. Jeng,et al.  Morphological Transformation of PS-b-PEO Diblock Copolymer by Selectively Dispersed Colloidal CdS Quantum Dots , 2003 .

[218]  C. Murphy Optical sensing with quantum dots. , 2002, Analytical chemistry.

[219]  Jiaguo Yu,et al.  Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders , 2002 .

[220]  Nikolai Gaponik,et al.  THIOL-CAPPING OF CDTE NANOCRYSTALS: AN ALTERNATIVE TO ORGANOMETALLIC SYNTHETIC ROUTES , 2002 .

[221]  S. Nie,et al.  Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules , 2001, Nature Biotechnology.

[222]  Lundstrom,et al.  Exciton storage in semiconductor self-assembled quantum dots , 1999, Science.

[223]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[224]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[225]  P. McCormick,et al.  Synthesis of CdS quantum dots by mechanochemical reaction , 1997 .

[226]  R. Crooks,et al.  MULTILAYER DENDRIMER-POLYANHYDRIDE COMPOSITE FILMS ON GLASS, SILICON, AND GOLD WAFERS , 1997 .

[227]  M. Rubner,et al.  Molecular-Level Processing of Conjugated Polymers. 4. Layer-by-Layer Manipulation of Polyaniline via Hydrogen-Bonding Interactions , 1997 .

[228]  M. Mitsuishi,et al.  Preparation of the Layer-by-Layer Deposited Ultrathin Film Based on the Charge-Transfer Interaction , 1997 .

[229]  Louis E. Brus,et al.  A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites , 1983 .

[230]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[231]  Rudolph A. Marcus,et al.  Chemical and Electrochemical Electron-Transfer Theory , 1964 .

[232]  Xiaobo Chen,et al.  Emerging Photocatalysts for Hydrogen Evolution , 2020 .

[233]  Baibiao Huang,et al.  Band-gap-matched CdSe QD/WS2 nanosheet composite: Size-controlled photocatalyst for high-efficiency water splitting , 2017 .

[234]  Andras Kis,et al.  MoS2 and semiconductors in the flatland , 2015 .

[235]  L. Balan,et al.  Preparation of Cu-doped ZnS QDs/TiO2 nanocomposites with high photocatalytic activity , 2014 .

[236]  Luigi Carbone,et al.  Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms , 2010 .

[237]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.

[238]  Minqiang Wang,et al.  Application and preparation of ZnSe nanometer powder by reduction process , 2004 .

[239]  N. Kotov,et al.  Layer-by-Layer Self-Assembly of Polyelectrolyte-Semiconductor Nanoparticle Composite Films , 1995 .

[240]  M. Matsumura,et al.  Effect of EDTA on the photocatalytic activities and flatband potentials of cadmium sulfide and cadmium selenide , 1990 .