Turbine Burners: Performance Improvement and Challenge of Flameholding

Nomenclature A = preexponential chemical rate constant a, b = mass fraction exponents in chemical rate law C = correction factor D = cavity depth E = activation energy f = frequency h = enthalpy L = cavity length M = Mach number, mixedness parameter n = Rossiter mode number p = pressure Q = fuel heating value R = universal gas constant Re = Reynolds number St = Strouhal number T = temperature t = time U = flow velocity over cavity x = position along mixing layer Y = mass fraction y = transverse position in mixing layer = ratio of specific heats = burning efficiency = ratio of convective velocity of vorticity to freestream velocity = Rossiter variable = density ! = chemical reaction rate

[1]  F. Billig,et al.  Liquid JP-7 combustion in a scramjet combustor , 2000 .

[2]  Thomas L. Jackson,et al.  Combustion in high-speed flows , 1994 .

[3]  Blake C. Chenevert,et al.  The Development of a Lean-Premixed Trapped Vortex Combustor , 2003 .

[4]  J. Rossiter Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds , 1964 .

[5]  Derek Dunn-Rankin,et al.  Turbulent combustion studies in a model turbine burner , 2007 .

[6]  Thomas L. Jackson,et al.  Ignition and structure of a laminar diffusion flame in a compressible mixing layer with finite rate chemistry , 1991 .

[7]  L. J. Spadaccini,et al.  Ignition delay characteristics of methane fuels , 1994 .

[8]  T. E. Lippert,et al.  Gas Turbine Reheat Using In-Situ Combustion , 2004 .

[9]  F. Billig Research on supersonic combustion , 1992 .

[10]  Roger L. Davis,et al.  Gas-turbine performance improvements through the use of multiple turbine interstage burners , 2004 .

[11]  Ting-Yi Li,et al.  Similar Solutions of Compressible Boundary-Layer Equations , 1953 .

[12]  W. Sirignano,et al.  Performance Increases for Gas-Turbine Engines Through Combustion Inside the Turbine , 1999 .

[13]  Dale T. Shouse,et al.  The Behavior of an Ultra-Compact Combustor (UCC) Based on Centrifugally-Enhanced Turbulent Burning Rates , 2004 .

[14]  Ian Proudman,et al.  Boundary Layer Theory (fourth edition). By H. SCHLICHTINO. New York: McGraw-Hill, 1960. 647 pp. £6. 8s. , 1962, Journal of Fluid Mechanics.

[15]  Eli Reshotko,et al.  The Compressible Laminar Boundary Layer with Heat Transfer and Arbitrary Pressure Gradient , 1956 .

[16]  Jinsheng Cai,et al.  Ignition and Flame Studies for Turbulent Transonic Mixing in a Curved Duct Flow , 2001 .

[17]  M. Y. Hussaini,et al.  An asymptotic analysis of supersonic reacting mixing layers , 1988 .

[18]  Chung King Law,et al.  Analysis of thermal ignition in the supersonic mixing layer , 1993 .

[19]  Jeffrey M. Donbar,et al.  Fuel Distribution About a Cavity Flameholder in Supersonic Flow , 2000 .

[20]  Dale T. Shouse,et al.  Ultra-Compact Combustors for Advanced Gas Turbine Engines , 2004 .

[21]  Feng Liu,et al.  Ignition and flame studies for a turbulent accelerating transonic mixing layer , 2001 .

[22]  Jinsheng Cai,et al.  Combustion in a Transonic Flow with Large Axial and Transverse Pressure Gradients ∗ , 2002 .

[23]  Andrew P. Lapsa,et al.  Experimental study on the effects of large centrifugal forces on step-stabilized flames , 2007 .

[24]  Roland H. Krauss,et al.  Experimental Supersonic Hydrogen Combustion Employing Staged Injection Behind a Rearward-Facing Step , 1993 .

[25]  Drummond J. Philip,et al.  Future Direction of Supersonic Combustion Research: Air Force/NASA Workshop on Supersonic Combustion , 1997 .

[26]  William A. Sirignano,et al.  Ignition and Flame Studies for an Accelerating Transonic Mixing Layer , 2001 .

[27]  P. G. Hill,et al.  The effects of swirl and tumble on combustion in spark-ignition engines , 1994 .

[28]  Srivatsava Venkataranga Puranam Combustion in cavities and accelerating flows , 2010 .

[29]  William A. Sirignano,et al.  On the Ignition of a Pre-Mixed Fuel by a Hot Projectile , 1970 .

[30]  J.Zelina,et al.  Fuel Injection Design Optimization For An Ultra-compact Combustor , 2003 .

[31]  F. Billig,et al.  Performance of an aerodynamic ramp fuel injector in a scramjet combustor , 2000 .

[32]  Jeffrey M. Donbar,et al.  Experimental assessment of a fuel injector for scramjet applications , 2000 .

[33]  R. V. Ravikrishna,et al.  Single Cavity Trapped Vortex Combustor Dynamics – Part-1: Experiments , 2011 .

[34]  C. Law,et al.  Ignition in the supersonic hydrogen/air mixing layer with reduced reaction mechanisms , 1994 .

[35]  G. J. Sturgess,et al.  Emissions Reduction Technologies for Military Gas Turbine Engines , 2005 .

[36]  Wright-Patterson Afb,et al.  SPRAY STRUCTURES OF AERATED LIQUID FUEL JETS IN SUPERSONIC CROSSFLOWS , 1999 .

[37]  Debasis Chakraborty,et al.  A thermo-chemical exploration of a two-dimensional reacting supersonic mixing layer , 1997 .

[38]  C. R. Illingworth Steady flow in the laminar boundary layer of a gas , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[39]  Juan I. Ramos,et al.  Probability Density Function Calculations in Turbulent Chemically Reacting Round Jets, Mixing Layers and One-Dimensional Reactors , 1985 .

[40]  R. J. Quaale Experimental Results for a High Swirl, Ultra Compact Combustor for Gas Turbine Engines , 2012 .

[41]  S. Menon,et al.  Simulation of fuel-air mixing and combustion in a trapped-vortex combustor , 2000 .

[42]  Derek Dunn-Rankin,et al.  Turbulent combustion in a curving, contracting channel with a cavity stabilized flame , 2009 .

[43]  H. W. Emmons,et al.  The Film Combustion of Liquid Fuel , 1956 .

[44]  R. V. Ravikrishna,et al.  Single Cavity Trapped Vortex Combustor Dynamics – Part-2: Simulations , 2011 .

[45]  P. Kennedy,et al.  Spray penetration heights of angle-injected aerated-liquid jets in supersonic crossflows , 2000 .

[46]  Ronald K. Hanson,et al.  Cavity Flame-Holders for Ignition and Flame Stabilization in Scramjets: An Overview , 2001 .

[47]  Song-Lin Yang,et al.  Parametric Cycle Analysis of a Turbofan Engine with an Interstage Turbine Burner , 2005 .

[48]  J.Zelina,et al.  Flow Measurements Within A High Swirl Ultra Compact Combustor For Gas Turbine Engines , 2003 .

[49]  Robert C. Hendricks,et al.  Experimental and Computational Study of Trapped Vortex Combustor Sector Rig with Tri-Pass Diffuser , 2013 .

[50]  Feng Liu,et al.  Turbojet and turbofan engine performance increases through turbine burners , 2000 .

[51]  Paul M. Chung,et al.  Chemically Reacting Nonequilibrium Boundary Layers , 1965 .

[52]  K. Stewartson,et al.  Correlated incompressible and compressible boundary layers , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[53]  Chih-Jen Sung,et al.  Investigation of fuel injection and flame stabilization in liquid hydrocarbon-fueled supersonic combustors , 2001 .

[54]  Derek Dunn-Rankin,et al.  Turbine Burners: Flameholding in Accelerating Flow , 2009 .

[55]  Morteza Gharib,et al.  The effect of flow oscillations on cavity drag , 1987, Journal of Fluid Mechanics.

[56]  G. J. Sturgess,et al.  Ultra-Compact Combustion Technology Using High Swirl for Enhanced Burning Rate , 2002 .

[57]  Inchul Kim,et al.  Diffusion flame in a two-dimensional, accelerating mixing layer , 1997 .

[58]  Frank E. Marble,et al.  Ignition and combustion in a laminar mixing zone , 1954 .

[59]  Feng Liu,et al.  Reacting Mixing-Layer Computations in a Simulated Turbine-Stator Passage , 2009 .

[60]  Feng Liu,et al.  Nonpremixed Combustion in an Accelerating Turning Transonic Flow Undergoing Transition , 2005 .

[61]  D. Spalding,et al.  Heat and Mass Transfer in Boundary Layers. 2nd edition. By S. V. PATANKAR and D. B. SPALDING. Intertext Books, 1970. 255 pp. £6. , 1971, Journal of Fluid Mechanics.

[62]  C. Westbrook,et al.  Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames , 1981 .

[63]  H. Schlichting Boundary Layer Theory , 1955 .

[64]  Feng Liu,et al.  Nonpremixed Combustion in an Accelerating Transonic Flow Undergoing Transition , 2005 .

[65]  Clarence B. Cohen Similar Solutions of Compressible Laminar Boundary-Layer Equations , 1954 .

[66]  Ben J. Colcord,et al.  Flameholding in Converging and Turning Channels over Cavities with Slot Injection , 2013 .