V-cycle convergence of some multigrid methods for ill-posed problems

For ill-posed linear operator equations we consider some V-cycle multigrid approaches, that, in the framework of Bramble, Pasciak, Wang, and Xu (1991), we prove to yield level independent contraction factor estimates. Consequently, we can incorporate these multigrid operators in a full multigrid method, that, together with a discrepancy principle, is shown to act as an iterative regularization method for the underlying infinite-dimensional ill-posed problem. Numerical experiments illustrate the theoretical results.

[1]  Frank Natterer,et al.  Regularisierung schlecht gestellter Probleme durch Projektionsverfahren , 1977 .

[2]  Numerische,et al.  A wavelet multilevel method for ill-posed problems stabilized by Tikhonov regularization , 1997 .

[3]  W. Hackbusch,et al.  A New Convergence Proof for the Multigrid Method Including the V-Cycle , 1983 .

[4]  Martin Hanke,et al.  Two-level preconditioners for regularized inverse problems I: Theory , 1999, Numerische Mathematik.

[5]  Sergei V. Pereverzev,et al.  On the Characterization of Self-Regularization Properties of a Fully Discrete Projection Method for Symm's Integral Equation , 2000 .

[6]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[7]  Joseph E. Pasciak,et al.  New estimates for multilevel algorithms including the V-cycle , 1993 .

[8]  Peter Oswald,et al.  Multilevel Finite Element Approximation , 1994 .

[9]  Barbara Kaltenbacher,et al.  Identification of nonlinear B–H curves based on magnetic field computations and multigrid methods for ill-posed problems , 2003, European Journal of Applied Mathematics.

[10]  B. Kaltenbacher On the regularizing properties of a full multigrid method for ill-posed problems , 2001 .

[11]  Barbara Kaltenbacher,et al.  A Projection-Regularized Newton Method for Nonlinear Ill-Posed Problems and Its Application to Parameter Identification Problems with Finite Element Discretization , 2000, SIAM J. Numer. Anal..

[12]  Jinchao Xu,et al.  Convergence estimates for multigrid algorithms without regularity assumptions , 1991 .

[13]  J. King,et al.  Multilevel algorithms for ill-posed problems , 1992 .

[14]  Barbara Kaltenbacher,et al.  Regularization by projection with a posteriori discretization level choice for linear and nonlinear ill-posed problems , 2000 .

[15]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[16]  Christian Großmann,et al.  Numerik partieller Differentialgleichungen , 1994 .

[17]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[18]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[19]  C. W. Groetsch,et al.  Inverse Problems in the Mathematical Sciences , 1993 .

[20]  Barbara Kaltenbacher,et al.  A multi-grid method with a priori and a posteriori level choice for the regularization of nonlinear ill-posed problems , 2002, Numerische Mathematik.

[21]  Panayot S. Vassilevski,et al.  Computational scales of Sobolev norms with application to preconditioning , 2000, Math. Comput..

[22]  J. Pasciak,et al.  The analysis of multigrid algorithms for pseudodifferential operators of order minus one , 1994 .