Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study

A. Whittemore | S. Cross | K. Heusinger | M. Beckmann | P. Fasching | C. Vachon | K. Czene | P. Hall | J. Olson | F. Couch | I. Dos Santos Silva | J. Chang-Claude | J. Morrison | N. Malats | M. García-Closas | E. Goode | J. Benítez | J. Heinz | G. Giles | G. Severi | J. Hopper | E. John | A. Spurdle | M. Southey | A. Cox | D. Easton | P. Pharoah | D. Lambrechts | H. Brauch | M. Sherman | A. Ziogas | H. Anton-Culver | A. Dunning | Shahana Ahmed | O. Fletcher | N. Johnson | G. Chenevix-Trench | B. Nordestgaard | L. Brinton | J. Lissowska | Jianjun Liu | A. Sigurdson | M. Reed | R. Milne | Y. Ko | A. Mannermaa | V. Kosma | V. Kataja | M. Shah | D. West | L. Gibson | A. Irwanto | R. Hein | H. Flyger | D. Flesch‐Janys | M. P. Zamora | I. Andrulis | J. Knight | G. Glendon | G. Dite | C. Apicella | L. Baglietto | L. Haeberle | A. Ekici | J. Figueroa | T. Brüning | J. A. Arias Pérez | S. Wang-gohrke | Z. Fredericksen | M. Humphreys | A. Smeets | J. Reumers | M. Kosel | A. Vrieling | M. Linet | S. Schonfeld | M. Gaudet | P. Auvinen | Helene Holland | B. Nordestgaard | D. Freedman | Manjeet K. Humphreys | N. Weerasooriya | Stig E Bojensen | I. dos Santos Silva | M. Beckmann | Nayana Weerasooriya | P. Hall | Graham G. Giles | Esther M. John | Peter A. Fasching | D. Easton | D. Flesch-Janys | J. A. Arias Perez | J. Hopper | Mark E. Sherman | Sara J Schonfeld | D. M. Freedman | Malcolm W Reed | Stig E Bojensen | Dee W. West | Ellen L. Goode | M. W. Beckmann | M. W. Reed | Sara J. Schonfeld

[1]  Kenneth Rice,et al.  Permutation and Parametric Bootstrap Tests for Gene–Gene and Gene–Environment Interactions , 2011, Annals of human genetics.

[2]  V. Beral,et al.  Gene–environment interactions in 7610 women with breast cancer: prospective evidence from the Million Women Study , 2010, The Lancet.

[3]  M. Thun,et al.  Performance of Common Genetic Variants in Breast-cancer Risk Models , 2022 .

[4]  M. Beckmann,et al.  Risk of estrogen receptor-positive and -negative breast cancer and single-nucleotide polymorphism 2q35-rs13387042. , 2009, Journal of the National Cancer Institute.

[5]  M. Thun,et al.  Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2 , 2009, Nature Genetics.

[6]  M. Beckmann,et al.  Five Polymorphisms and Breast Cancer Risk: Results from the Breast Cancer Association Consortium , 2009, Cancer Epidemiology Biomarkers & Prevention.

[7]  Julian Peto,et al.  Association of ESR1 gene tagging SNPs with breast cancer risk. , 2009, Human molecular genetics.

[8]  J. Struewing,et al.  Polymorphisms in estrogen biosynthesis and metabolism-related genes, ionizing radiation exposure, and risk of breast cancer among US radiologic technologists , 2009, Breast Cancer Research and Treatment.

[9]  R. Wilkins Polygenes, risk prediction, and targeted prevention of breast cancer. , 2008, The New England journal of medicine.

[10]  J. Chang-Claude,et al.  Risk of different histological types of postmenopausal breast cancer by type and regimen of menopausal hormone therapy , 2008, International journal of cancer.

[11]  A. Sigurdsson,et al.  Common variants on chromosome 5p12 confer susceptibility to estrogen receptor–positive breast cancer , 2008, Nature Genetics.

[12]  B. van Calster,et al.  In early-stage breast cancer, the estrogen receptor interacts with correlation between human epidermal growth factor receptor 2 status and age at diagnosis, tumor grade, and lymph node involvement. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[13]  Peter Kraft,et al.  Heterogeneity of Breast Cancer Associations with Five Susceptibility Loci by Clinical and Pathological Characteristics , 2008, PLoS genetics.

[14]  M. Bani,et al.  Single nucleotide polymorphism D1853N of the ATM gene may alter the risk for breast cancer , 2008, Journal of Cancer Research and Clinical Oncology.

[15]  E. van Limbergen,et al.  Does estrogen receptor negative/progesterone receptor positive breast carcinoma exist? , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[16]  M. Bani,et al.  Single nucleotide polymorphisms of the aromatase gene (CYP19A1), HER2/neu status, and prognosis in breast cancer patients , 2008, Breast Cancer Research and Treatment.

[17]  T. Illig,et al.  The CYP1B1_1358_GG genotype is associated with estrogen receptor-negative breast cancer , 2008, Breast Cancer Research and Treatment.

[18]  A. Whittemore,et al.  Association Between Single-Nucleotide Polymorphisms in Hormone Metabolism and DNA Repair Genes and Epithelial Ovarian Cancer: Results from Two Australian Studies and an Additional Validation Set , 2007, Cancer Epidemiology Biomarkers & Prevention.

[19]  D. Gudbjartsson,et al.  Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor–positive breast cancer , 2007, Nature Genetics.

[20]  Lester L. Peters,et al.  Genome-wide association study identifies novel breast cancer susceptibility loci , 2007, Nature.

[21]  W. Willett,et al.  A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer , 2007, Nature Genetics.

[22]  Jaana M. Hartikainen,et al.  A common coding variant in CASP8 is associated with breast cancer risk , 2007, Nature Genetics.

[23]  R. Vierkant,et al.  A Comprehensive Examination of CYP19 Variation and Breast Density , 2007, Cancer Epidemiology Biomarkers & Prevention.

[24]  S. Bojesen,et al.  Increased risk of breast cancer associated with CHEK2*1100delC. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[25]  Paul D.P. Pharoah,et al.  Commonly studied single-nucleotide polymorphisms and breast cancer: results from the Breast Cancer Association Consortium. , 2007, Journal of the National Cancer Institute.

[26]  Genica,et al.  Commonly studied single-nucleotide polymorphisms and breast cancer: Results from the Breast Cancer Association Consortium , 2006 .

[27]  Joaquín Dopazo,et al.  ERCC4 associated with breast cancer risk: a two-stage case-control study using high-throughput genotyping. , 2006, Cancer research.

[28]  M. García-Closas,et al.  Established breast cancer risk factors by clinically important tumour characteristics , 2006, British Journal of Cancer.

[29]  Wj Gauderman,et al.  QUANTO 1.1: A computer program for power and sample size calculations for genetic-epidemiology studies , 2006 .

[30]  John L Hopper,et al.  Analysis of cancer risk and BRCA1 and BRCA2 mutation prevalence in the kConFab familial breast cancer resource , 2006, Breast Cancer Research.

[31]  A. Ashworth,et al.  Interaction between CHEK2*1100delC and other low-penetrance breast-cancer susceptibility genes: a familial study , 2005, The Lancet.

[32]  Nicholas J Wareham,et al.  Allelic association of the human homologue of the mouse modifier Ptprj with breast cancer. , 2005, Human molecular genetics.

[33]  S. Bojesen,et al.  No association of breast cancer risk with integrin beta3 (ITGB3) Leu33Pro genotype , 2005, British Journal of Cancer.

[34]  D. Easton,et al.  An autosome-wide scan for linkage disequilibrium-based association in sporadic breast cancer cases in eastern Finland: three candidate regions found. , 2005, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology.

[35]  B. Ponder,et al.  Association of a common variant of the CASP8 gene with reduced risk of breast cancer. , 2004, Journal of the National Cancer Institute.

[36]  M. García-Closas,et al.  Etiology of hormone receptor-defined breast cancer: a systematic review of the literature. , 2004, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology.

[37]  F. Clavel-Chapelon,et al.  Body size and breast cancer risk: Findings from the European prospective investigation into cancer and nutrition (EPIC) , 2004, International journal of cancer.

[38]  Norman Boyd,et al.  The Breast Cancer Family Registry: an infrastructure for cooperative multinational, interdisciplinary and translational studies of the genetic epidemiology of breast cancer , 2004, Breast Cancer Research.

[39]  J. Chang-Claude,et al.  Breastfeeding and breast cancer risk by age 50 among women in Germany , 2000, Cancer Causes & Control.

[40]  P. Newcomb,et al.  Selection bias in the assessment of gene-environment interaction in case-control studies. , 2003, American journal of epidemiology.

[41]  John L Hopper,et al.  Familial risks, early-onset breast cancer, and BRCA1 and BRCA2 germline mutations. , 2003, Journal of the National Cancer Institute.

[42]  W. Gauderman Sample size requirements for association studies of gene-gene interaction. , 2002, American journal of epidemiology.

[43]  D. English,et al.  The Melbourne Collaborative Cohort Study. , 2002, IARC scientific publications.

[44]  J R Marshall,et al.  Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. , 2000, American journal of epidemiology.

[45]  A. Ziogas,et al.  Characteristics of BRCA1 mutations in a population-based case series of breast and ovarian cancer. , 2000, European journal of cancer.

[46]  D. Seminara,et al.  Cancer risk estimates for family members of a population-based family registry for breast and ovarian cancer. , 2000, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology.

[47]  J L Kelsey,et al.  Reproductive factors and breast cancer. , 1993, Epidemiologic reviews.