Atomic Ionization and Molecular Dissociation in a Hydrogen Gas within the Physical Picture

We study a hydrogen gas at low densities within the physical picture. Recombination processes leading to the formation of atoms and molecules are properly taken into account via the well‐known Ebeling function and a new four‐body partition function. Our method provides a reliable equation of state which covers the plasma, atomic and molecular phases (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  W. Kraeft Quantum Statistics of Charged Particle Systems , 2011 .

[2]  A. Alastuey,et al.  Pressure of a Partially Ionized Hydrogen Gas: Numerical Results from Exact Low Temperature Expansions , 2010 .

[3]  A. Alastuey,et al.  Exact asymptotic expansions for the thermodynamics of hydrogen gas in the Saha regime , 2009, 1009.3417.

[4]  I. Iosilevskiy Thermodynamic Properties of Gaseous Plasmas in the Zero‐Temperature Limit , 2009, 0902.3708.

[5]  A. Alastuey,et al.  Exact Results for Thermodynamics of the Hydrogen Plasma: Low-Temperature Expansions Beyond Saha Theory , 2008 .

[6]  W. Däppen The equation of state for the solar interior , 2006 .

[7]  A. Alastuey,et al.  Screened Cluster Expansions for Partially Ionized Gases , 2003, cond-mat/0304059.

[8]  Forrest J. Rogers,et al.  Updated and Expanded OPAL Equation-of-State Tables: Implications for Helioseismology , 2002 .

[9]  B. Militzer,et al.  Path integral Monte Carlo simulation of the low-density hydrogen plasma. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  J. Ortner,et al.  Ionization equilibrium and EOS of a low-temperature hydrogen plasma in weak magnetic fields , 2000 .

[11]  D. Brydges,et al.  Coulomb Systems at Low Density: A Review , 1999, cond-mat/9904122.

[12]  A. Alastuey,et al.  Virial expansion of the equation of state of a quantum plasma , 1992 .

[13]  F. Rogers Equation of state of dense, partially degenerate, reacting plasmas , 1981 .