Effect of molecular packing on the exciton diffusion length in organic solar cells

The efficiency of photocurrent generation in bilayer organic solar cells is shown to increase when molecular order is improved. This effect is studied in cells using pure cis and trans isomers of 3,4,9,10-perylene tetracarboxylic bisbenzimidazole. X-ray diffraction studies show that the π-π stacking direction lies in the substrate plane for both isomers and that the trans isomer exhibits improved molecular order in the out-of-plane direction. The improved stacking leads to an increased exciton diffusion length and increased external quantum and power conversion efficiencies. These results provide insight into the effect of molecular structure and packing on the exciton diffusion length.

[1]  David Beljonne,et al.  Exciton migration in rigid-rod conjugated polymers: an improved Förster model. , 2005, Journal of the American Chemical Society.

[2]  V. May,et al.  Charge and Energy Transfer Dynamics in Molecular Systems: MAY:CHARGE TRANSFER 3ED O-BK , 2011 .

[3]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[4]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[5]  Stephen R. Forrest,et al.  Small molecular weight organic thin-film photodetectors and solar cells , 2003 .

[6]  Michael D. McGehee,et al.  Effects of optical interference and energy transfer on exciton diffusion length measurements in organic semiconductors , 2006 .

[7]  Stephen R. Forrest,et al.  Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes , 2000 .

[8]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[9]  A. Kerman,et al.  Time-Dependent Variational Principle forφ4Field Theory: RPA Approximation and Renormalization (II)☆ , 1998, hep-th/9805061.

[10]  L. S. Roman,et al.  Modeling photocurrent action spectra of photovoltaic devices based on organic thin films , 1999 .

[11]  Stephen R. Forrest,et al.  Separation of geminate charge-pairs at donor–acceptor interfaces in disordered solids , 2004 .

[12]  B. Gregg,et al.  Long-Range Singlet Energy Transfer in Perylene Bis(phenethylimide) Films , 1997 .

[13]  A. Heeger,et al.  Flexible light-emitting diodes made from soluble conducting polymers , 1992, Nature.

[14]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[15]  S. Forrest,et al.  Controlled growth of a molecular bulk heterojunction photovoltaic cell , 2004 .

[16]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[17]  S. Guha,et al.  Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies , 1997 .

[18]  Stephen R. Forrest,et al.  Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films , 2003, Nature.

[19]  Mm Martijn Wienk,et al.  Solution‐Processed Organic Tandem Solar Cells , 2006 .

[20]  Nigel Clarke,et al.  Predicting structure and property relations in polymeric photovoltaic devices , 2006 .

[21]  Stephen R. Forrest,et al.  Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques. , 1997, Chemical reviews.

[22]  Chihaya Adachi,et al.  Correlation of hole mobility, exciton diffusion length, and solar cell characteristics in phthalocyanine/fullerene organic solar cells , 2007 .

[23]  Stephen R. Forrest,et al.  Study of localized and extended excitons in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) II. Photocurrent response at low electric fields , 1996 .