Intravenous administration of bone marrow stromal cells increases survivin and Bcl-2 protein expression and improves sensorimotor function following ischemia in rats

[1]  K. Houkin,et al.  Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. , 2005, Molecular therapy : the journal of the American Society of Gene Therapy.

[2]  Michael Chopp,et al.  Marrow Stromal Cell Transplantation after Traumatic Brain Injury Promotes Cellular Proliferation within the Brain , 2004, Neurosurgery.

[3]  Ora Dillon-Carter,et al.  Bone marrow grafts restore cerebral blood flow and blood brain barrier in stroke rats , 2004, Brain Research.

[4]  K. Houkin,et al.  A therapeutic window for intravenous administration of autologous bone marrow after cerebral ischemia in adult rats , 2004, Brain Research.

[5]  B. Siesjö,et al.  Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat , 2004, Experimental Brain Research.

[6]  M. Chopp,et al.  Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat , 2003, Journal of neuroscience research.

[7]  R. Sapolsky,et al.  Bcl‐2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase‐3 activity , 2003, Journal of neurochemistry.

[8]  W. Sessa,et al.  Inhibitor of apoptosis protein survivin regulates vascular injury , 2002, Nature Medicine.

[9]  R. Sobel,et al.  Mild hypothermia increases Bcl-2 protein expression following global cerebral ischemia. , 2001, Brain research. Molecular brain research.

[10]  M. Chopp,et al.  Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats , 2001, Journal of the Neurological Sciences.

[11]  M. Chopp,et al.  Therapeutic Benefit of Intravenous Administration of Bone Marrow Stromal Cells After Cerebral Ischemia in Rats , 2001, Stroke.

[12]  I. Ay,et al.  Intravenous basic fibroblast growth factor (bFGF) decreases DNA fragmentation and prevents downregulation of Bcl-2 expression in the ischemic brain following middle cerebral artery occlusion in rats. , 2001, Brain research. Molecular brain research.

[13]  H. J. Kim,et al.  An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. , 2001, Biochemistry.

[14]  J. Hallenbeck,et al.  The Protective Effect of Ceramide in Immature Rat Brain Hypoxia—Ischemia Involves Up-Regulation of BCL-2 and Reduction of TUNEL-Positive Cells , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[15]  N. Yasui,et al.  Immunohistochemical expression of Bcl-2, Bax and cytochrome c following focal cerebral ischemia and effect of hypothermia in rat , 2000, Neuroscience Letters.

[16]  M. Chopp,et al.  Intrastriatal Transplantation of Bone Marrow Nonhematopoietic Cells Improves Functional Recovery After Stroke in Adult Mice , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[17]  B. Aspey,et al.  Temporary middle cerebral artery occlusion in the rat: consistent protocol for a model of stroke and reperfusion , 2000, Neuropathology and applied neurobiology.

[18]  T. Yanagihara,et al.  Alterations of Bcl-2 family proteins precede cytoskeletal proteolysis in the penumbra, but not in infarct centres following focal cerebral ischemia in mice , 1998, Neuroscience.

[19]  Fengzhi Li,et al.  Control of apoptosis and mitotic spindle checkpoint by survivin , 1998, Nature.

[20]  M. Hori,et al.  Amelioration of hippocampal neuronal damage after global ischemia by neuronal overexpression of BCL-2 in transgenic mice. , 1998, Stroke.

[21]  Aspey,et al.  Middle cerebral artery occlusion in the rat: consistent protocol for a model of stroke , 1998, Neuropathology and applied neurobiology.

[22]  M. Fisher,et al.  Reproducibility and reliability of middle cerebral artery occlusion using a silicone-coated suture (Koizumi) in rats , 1997, Journal of the Neurological Sciences.

[23]  Z. Oltvai,et al.  Bcl-2 functions in an antioxidant pathway to prevent apoptosis , 1993, Cell.

[24]  S. Ben‐Sasson,et al.  Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation , 1992, The Journal of cell biology.

[25]  P. Weinstein,et al.  Reversible middle cerebral artery occlusion without craniectomy in rats. , 1989, Stroke.