Gate-Error-Resilient Quantum Steane Codes

An encoderless quantum code is capable of connecting quantum information by replacing the encoder circuit with a fault-tolerant single-qubit gate arrangement. As a further benefit, in contrast to state preparation techniques, our encoderless scheme requires no prior knowledge of the input information, therefore totally unknown states can be encoded fault-tolerantly. Our encoderless quantum code delivers a frame error rate that is three orders of magnitude lower than that of the corresponding scheme relying on a non-fault-tolerant encoder, when the gate error probability is as high as 10−3.

[1]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[2]  E. Knill Fault-Tolerant Postselected Quantum Computation: Schemes , 2004, quant-ph/0402171.

[3]  Ben W. Reichardt Improved ancilla preparation scheme increases fault-tolerant threshold , 2004 .

[4]  Lajos Hanzo,et al.  Quantum Topological Error Correction Codes are Capable of Improving the Performance of Clifford Gates , 2019, IEEE Access.

[5]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[6]  Andrew M. Steane,et al.  Fast fault-tolerant filtering of quantum codewords , 2008 .

[7]  Lajos Hanzo,et al.  Quantum Coding Bounds and a Closed-Form Approximation of the Minimum Distance Versus Quantum Coding Rate , 2017, IEEE Access.

[8]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[9]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[10]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[11]  Vwani P. Roychowdhury,et al.  Latency in local, two-dimensional, fault-tolerant quantum computing , 2008, Quantum Inf. Comput..

[12]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[13]  Lajos Hanzo,et al.  The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure , 2015, IEEE Access.

[14]  Rui Chao,et al.  Quantum Error Correction with Only Two Extra Qubits. , 2017, Physical review letters.

[15]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[16]  Andrew Steane,et al.  Active Stabilization, Quantum Computation, and Quantum State Synthesis , 1997 .

[17]  David P. DiVincenzo,et al.  Noise threshold for a fault-tolerant two-dimensional lattice architecture , 2007, Quantum Inf. Comput..

[18]  Lajos Hanzo,et al.  Duality of Quantum and Classical Error Correction Codes: Design Principles and Examples , 2019, IEEE Communications Surveys & Tutorials.

[19]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[20]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[21]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[22]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[23]  Ching-Yi Lai,et al.  Fault-tolerant preparation of stabilizer states for quantum Calderbank-Shor-Steane codes by classical error-correcting codes , 2016, 1605.05647.

[24]  Soon Xin Ng,et al.  Mitigation of Decoherence-Induced Quantum-Bit Errors and Quantum-Gate Errors Using Steane’s Code , 2020, IEEE Access.

[25]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[26]  John Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..

[27]  DiVincenzo,et al.  Fault-Tolerant Error Correction with Efficient Quantum Codes. , 1996, Physical review letters.

[28]  Christof Zalka Threshold Estimate for Fault Tolerant Quantum Computation , 1996 .

[29]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[30]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[31]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[32]  Hayato Goto,et al.  Minimizing resource overheads for fault-tolerant preparation of encoded states of the Steane code , 2016, Scientific Reports.

[33]  A. Kitaev Quantum Error Correction with Imperfect Gates , 1997 .

[34]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[35]  Ben Reichardt,et al.  Fault-tolerant ancilla preparation and noise threshold lower bounds for the 23-qubit Golay code , 2011, Quantum Inf. Comput..