Mathematical Aspects of Finite Element Methods for Incompressible Viscous Flows

One of the most successful and well-developed mathematical theories concerning finite element methods (FEM) is that connected with incompressible flow problems. The success of this theory lies not only in the accumulated elegant mathematical results, but also in its impact on practical computations. The outstanding monograph by Girault and Raviart [15] give a rigorous account of this theory, and to this day remain the definitive sources.

[1]  R. Temam Navier-Stokes Equations , 1977 .

[2]  Max Gunzburger,et al.  On conforming finite element methods for the inhomogeneous stationary Navier-Stokes equations , 1983 .

[3]  Max Gunzburger,et al.  On finite element approximations of problems having inhomogeneous essential boundary conditions , 1983 .

[4]  R. A. Nicolaides,et al.  On the stability of bilinear-constant velocity-pressure finite elements , 1984 .

[5]  Robert L. Lee,et al.  The cause and cure (!) of the spurious pressures generated by certain fem solutions of the incompressible Navier‐Stokes equations: Part 2 , 1981 .

[6]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[7]  Max Gunzburger,et al.  Algorithmic and theoretical results on computation of incompressible viscous flows by finite element methods , 1985 .

[8]  海老 豊,et al.  F. Thomasset: Implementation of Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, New York and Heidelberg, 1981, viii+162ページ, 9,270円 (Springer Series in Computational Physics). , 1983 .

[9]  R. A. Nicolaides,et al.  Stable and Semistable Low Order Finite Elements for Viscous Flows , 1985 .

[10]  Michel Fortin,et al.  An analysis of the convergence of mixed finite element methods , 1977 .

[11]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[12]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[13]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[14]  François Thomasset,et al.  Implementation of Finite Element Methods for Navier-Stokes Equations , 1981 .

[15]  P. Jamet,et al.  Numerical solution of the stationary Navier-Stokes equations by finite element methods , 1973, Computing Methods in Applied Sciences and Engineering.

[16]  R. Verfürth Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions , 1985 .

[17]  Claes Johnson,et al.  Analysis of some mixed finite element methods related to reduced integration , 1982 .

[18]  Rüdiger Verfürth,et al.  Error estimates for a mixed finite element approximation of the Stokes equations , 1984 .

[19]  O. Pironneau,et al.  Error estimates for finite element method solution of the Stokes problem in the primitive variables , 1979 .

[20]  R. Nicolaides,et al.  On conforming mixed finite element methods for incompressible viscous flow problems , 1982 .

[21]  R. A. Nicolaides,et al.  STABILITY OF FINITE ELEMENTS UNDER DIVERGENCE CONSTRAINTS , 1983 .

[22]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[23]  R. Verfürth Finite element approximation on incompressible Navier-Stokes equations with slip boundary condition , 1987 .

[24]  R. Nicolaides,et al.  Finite element technique for optimal pressure recovery from stream function formulation of viscous flows , 1986 .

[25]  Roland Glowinski,et al.  An introduction to the mathematical theory of finite elements , 1976 .