Tropical optimization technique in bi-objective project scheduling under temporal constraints

We consider a project that consists of a set of activities performed in parallel under constraints on their start and finish times, including start-finish precedence relationships, release start times, release end times, and deadlines. The problems of interest are to decide on the optimal schedule of the activities to minimize both the maximum flow-time over all activities, and the project makespan. We formulate these problems as bi-objective optimization problems in the framework of tropical mathematics which investigates the theory and applications of algebraic systems with idempotent operations and has various applications in management science and operations research. Then, the use of methods and techniques of tropical optimization allows to derive complete Pareto-optimal solutions of the problems in a direct explicit form ready for further analysis and straightforward computation. We discuss the computational complexity of the solution and give illustrative examples.

[1]  Kathrin Klamroth,et al.  Introducing multiobjective complex systems , 2018, Eur. J. Oper. Res..

[2]  R. A. Cuninghame-Green,et al.  Describing Industrial Processes with Interference and Approximating Their Steady-State Behaviour , 1962 .

[3]  J. Golan Semirings and Affine Equations over Them: Theory and Applications , 2003 .

[4]  Nikolai Krivulin,et al.  Extremal properties of tropical eigenvalues and solutions to tropical optimization problems , 2013, ArXiv.

[5]  Mario Vanhoucke,et al.  Project Management with Dynamic Scheduling , 2012 .

[6]  Professor Dr. Klaus Neumann,et al.  Project Scheduling with Time Windows and Scarce Resources , 2003, Springer Berlin Heidelberg.

[7]  Nikolai Krivulin,et al.  A multidimensional tropical optimization problem with a non-linear objective function and linear constraints , 2013, ArXiv.

[8]  Nikolai Krivulin,et al.  Direct solution to constrained tropical optimization problems with application to project scheduling , 2015, Comput. Manag. Sci..

[9]  Nikolai Krivulin,et al.  Tropical optimization problems with application to project scheduling with minimum makespan , 2014, Ann. Oper. Res..

[10]  Martin Gavalec,et al.  Decision Making and Optimization , 2015 .

[11]  V. Kolokoltsov,et al.  Idempotent Analysis and Its Applications , 1997 .

[12]  Karel Zimmermann,et al.  Disjunctive optimization, max-separable problems and extremal algebras , 2003, Theor. Comput. Sci..

[13]  Kaisa Miettinen,et al.  Introduction to Multiobjective Optimization: Noninteractive Approaches , 2008, Multiobjective Optimization.

[14]  Massimo Pappalardo,et al.  Multiobjective Optimization: A Brief Overview , 2008 .

[15]  Nikolai Krivulin,et al.  Tropical optimization problems in time-constrained project scheduling , 2015, ArXiv.

[16]  S. Ruzika,et al.  Approximation Methods in Multiobjective Programming , 2005 .

[17]  M. Fiedler,et al.  Linear Optimization Problems with Inexact Data , 2006 .

[18]  Robert P. Judd,et al.  Efficient calculation of the makespan for job-shop systems without recirculation using max-plus algebra , 2014 .

[19]  Michel Minoux,et al.  Graphs, dioids and semirings : new models and algorithms , 2008 .

[20]  B. Ciffler Scheduling general production systems using schedule algebra , 1963 .

[21]  A. J. Hoffman On abstract dual linear programs , 1963 .

[22]  William M. McEneaney,et al.  Max-plus methods for nonlinear control and estimation , 2005 .

[23]  Harold P. Benson Multi-objective Optimization: Pareto Optimal Solutions, Properties , 2009, Encyclopedia of Optimization.

[24]  Nikolai Krivulin,et al.  Using tropical optimization techniques in bi-criteria decision problems , 2018, Computational Management Science.

[25]  Jean-Charles Billaut,et al.  Application of an optimization problem in Max-Plus algebra to scheduling problems , 2006, Discret. Appl. Math..

[26]  Hiroyuki Goto,et al.  Robust MPL scheduling considering the number of in-process jobs , 2009, Eng. Appl. Artif. Intell..

[27]  S. N. N. Pandit,et al.  A New Matrix Calculus , 1961 .

[28]  Rosa Blanco,et al.  Theoretical and Practical Fundamentals , 2015 .

[29]  Nikolai Krivulin,et al.  A constrained tropical optimization problem: complete solution and application example , 2013, ArXiv.

[30]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[31]  Nikolai Krivulin,et al.  Tropical optimization problems , 2014, ArXiv.

[32]  Hiroyuki Goto Dual representation and its online scheduling method for event-varying DESs with capacity constraints , 2008, Int. J. Control.