Quantum Random Access Stored-Program Machines

Random access machines (RAMs) and random access stored-program machines (RASPs) are models of computing that are closer to the architecture of real-world computers than Turing machines (TMs). They are also convenient in complexity analysis of algorithms. The relationships between RAMs, RASPs and TMs are well-studied. However, a clear relationships between their quantum counterparts are still missing in the literature. We fill in this gap by formally defining the models of quantum random access machines (QRAMs) and quantum random access stored-program machines (QRASPs) and clarifying the relationships between QRAMs, QRASPs and quantum Turing machines (QTMs). In particular, we prove: 1. A $T(n)$-time QRAM (resp. QRASP) can be simulated by an $O(T(n))$-time QRASP (resp. QRAM). 2. A $T(n)$-time QRAM under the logarithmic (resp. constant) cost criterion can be simulated by an $\tilde O(T(n)^4)$-time (resp. $\tilde O(T(n)^8)$-time) QTM. 3. A $T(n)$-time QTM can be simulated within error $\varepsilon > 0$ by an $O(T(n)^2 \operatorname{polylog}(T(n), 1/\varepsilon))$-time QRAM (under both the logarithmic and constant cost criterions). As a corollary, we have: $\textbf{P} \subseteq \textbf{EQRAMP} \subseteq \textbf{EQP} \subseteq \textbf{BQP} = \textbf{BQRAMP}$, where $\textbf{EQRAMP}$ and $\textbf{BQRAMP}$ stand for the sets of problems that can be solved by polynomial-time QRAMs with certainty and bounded-error, respectively.

[1]  Stephen A. Cook,et al.  Time Bounded Random Access Machines , 1973, J. Comput. Syst. Sci..

[2]  E. Knill,et al.  Conventions for quantum pseudocode , 1996, 2211.02559.

[3]  Richard M. Karp,et al.  A Survey of Parallel Algorithms for Shared-Memory Machines , 1988 .

[4]  Yu Shi Remarks on Universal Quantum Computer , 1998, quant-ph/9805083.

[5]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  Xiang Fu,et al.  eQASM: An Executable Quantum Instruction Set Architecture , 2018, ArXiv.

[7]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  Jaroslaw Adam Miszczak Models of quantum computation and quantum programming languages , 2010, 1012.6035.

[9]  Richard Cleve,et al.  Fast parallel circuits for the quantum Fourier transform , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[10]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[11]  E. Knill,et al.  Conventions for quantum pseudocode , 1996, 2211.02559.

[12]  S. Popescu,et al.  The Halting Problem for Quantum Computers , 1998, quant-ph/9806054.

[13]  Martin Nilsson,et al.  Parallel Quantum Computation and Quantum Codes , 2001, SIAM J. Comput..

[14]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[15]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[16]  Robert König,et al.  Quantum advantage with shallow circuits , 2017, Science.

[17]  Richard P. Brent,et al.  Multiple-precision zero-finding methods and the complexity of elementary function evaluation , 1975, ArXiv.

[18]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[19]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[20]  M. Ozawa QUANTUM NONDEMOLITION MONITORING OF UNIVERSAL QUANTUM COMPUTERS , 1997, quant-ph/9704028.

[21]  William J. Zeng,et al.  A Practical Quantum Instruction Set Architecture , 2016, ArXiv.

[22]  Mingsheng Ying,et al.  Foundations of Quantum Programming , 2016 .

[23]  J. Myers CAN A UNIVERSAL QUANTUM COMPUTER BE FULLY QUANTUM , 1997 .

[24]  Mingsheng Ying,et al.  Reasoning about Parallel Quantum Programs , 2018, ArXiv.

[25]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[26]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[27]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[28]  Masanori Ohya,et al.  On Halting Process of Quantum Turing Machine , 2005, Open Syst. Inf. Dyn..

[29]  Harumichi Nishimura,et al.  Computational complexity of uniform quantum circuit families and quantum Turing machines , 2002, Theor. Comput. Sci..

[30]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[31]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.