Almost uniform sampling via quantum walks

Many classical randomized algorithms (e.g. approximation algorithms for #P-complete problems) utilize the following random walk algorithm for almost uniform sampling from a state space S of cardinality N: run a symmetric ergodic Markov chain P on S for long enough to obtain a random state from within total variation distance of the uniform distribution over S. The running time of this algorithm, the so-called mixing time of P, is O(δ−1(logN+log−1)), where δ is the spectral gap of P. We present a natural quantum version of this algorithm based on repeated measurements of the quantum walk Ut = e−iPt. We show that it samples almost uniformly from S with logarithmic dependence on −1 just as the classical walk P does; previously, no such quantum walk algorithm was known. We then outline a framework for analysing its running time and formulate two plausible conjectures which together would imply that it runs in time O(δ−1/2log N log−1) when P is the standard transition matrix of a constant-degree graph. We prove each conjecture for a subclass of Cayley graphs.

[1]  J. Conway,et al.  Trigonometric diophantine equations (On vanishing sums of roots of unity) , 1976 .

[2]  D. Aldous Some Inequalities for Reversible Markov Chains , 1982 .

[3]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[4]  Daniel R. Simon On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[5]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[6]  D. Meyer From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.

[7]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[8]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[9]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[10]  Ashwin Nayak,et al.  Quantum Walk on the Line , 2000 .

[11]  Nayak Ashwin,et al.  Quantum Walk on the Line , 2000 .

[12]  Andris Ambainis,et al.  Quantum walks on graphs , 2000, STOC '01.

[13]  Andris Ambainis,et al.  One-dimensional quantum walks , 2001, STOC '01.

[14]  John Watrous Quantum Simulations of Classical Random Walks and Undirected Graph Connectivity , 2001, J. Comput. Syst. Sci..

[15]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries , 2001, STOC '01.

[16]  Edward Farhi,et al.  An Example of the Difference Between Quantum and Classical Random Walks , 2002, Quantum Inf. Process..

[17]  Julia Kempe,et al.  Quantum Random Walks Hit Exponentially Faster , 2002, ArXiv.

[18]  Alexander Russell,et al.  Quantum Walks on the Hypercube , 2002, RANDOM.

[19]  K. Birgitta Whaley,et al.  Quantum random-walk search algorithm , 2002, quant-ph/0210064.

[20]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[21]  Julia Kempe,et al.  Discrete Quantum Walks Hit Exponentially Faster , 2003, RANDOM-APPROX.

[22]  Andris Ambainis,et al.  QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS , 2003, quant-ph/0403120.

[23]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[24]  John Watrous,et al.  Continuous-Time Quantum Walks on the Symmetric Group , 2003, RANDOM-APPROX.

[25]  Viv Kendon,et al.  Decoherence can be useful in quantum walks , 2002, quant-ph/0209005.

[26]  Frédéric Magniez,et al.  An $O(n^{1.3})$ Quantum Algorithm for the Triangle Problem , 2003 .

[27]  Mario Szegedy,et al.  Spectra of Quantized Walks and a $\sqrt{\delta\epsilon}$ rule , 2004, quant-ph/0401053.

[28]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[29]  Andrew M. Childs,et al.  Quantum information processing in continuous time , 2004 .

[30]  Andrew M. Childs,et al.  Spatial search and the Dirac equation , 2004 .

[31]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.

[32]  Andris Ambainis,et al.  Quantum walk algorithm for element distinctness , 2003, 45th Annual IEEE Symposium on Foundations of Computer Science.

[33]  Andrew M. Childs,et al.  Spatial search by quantum walk , 2003, quant-ph/0306054.

[34]  Andris Ambainis,et al.  Coins make quantum walks faster , 2004, SODA '05.

[35]  Andrew M. Childs,et al.  Quantum algorithms for subset finding , 2005, Quantum Inf. Comput..

[36]  Frédéric Magniez,et al.  Quantum algorithms for the triangle problem , 2005, SODA '05.

[37]  Harry Buhrman,et al.  Quantum verification of matrix products , 2004, SODA '06.

[38]  Frédéric Magniez,et al.  Quantum Complexity of Testing Group Commutativity , 2005, Algorithmica.

[39]  Peter C. Richter Quantum speedup of classical mixing processes , 2006, quant-ph/0609204.

[40]  Sean Hallgren Polynomial-time quantum algorithms for Pell's equation and the principal ideal problem , 2007, JACM.

[41]  Vivien M. Kendon,et al.  Decoherence in quantum walks – a review , 2006, Mathematical Structures in Computer Science.

[42]  Vivien M. Kendon,et al.  Optimal computation with non-unitary quantum walks , 2008, Theor. Comput. Sci..

[43]  F. Jotzo,et al.  Double counting and the Paris Agreement rulebook , 2019, Science.

[44]  . Markov Chains and Random Walks on Graphs , .