Symmetry group at future null infinity: Scalar theory

We reduce the massless scalar field theory in Minkowski spacetime to future null infinity. We compute the Poincar\'e flux operators, which can be generalized and identified as the supertranslation and superrotation generators. These generators are shown to form a closed symmetry algebra with a divergent central charge. In the classical limit, we argue that the algebra may be interpreted as the geometric symmetry of a Carrollian manifold, i.e., the hypersurface of future null infinity. Our method may be used to find more physically interesting Carrollian field theories.

[1]  X. Bekaert,et al.  Massless scalars and higher-spin BMS in any dimension , 2022, Journal of High Energy Physics.

[2]  A. Banerjee,et al.  Carroll covariant scalar fields in two dimensions , 2022, Journal of High Energy Physics.

[3]  S. Dutta,et al.  Scattering Amplitudes: Celestial and Carrollian. , 2022, Physical review letters.

[4]  Romain Ruzziconi,et al.  Carrollian Perspective on Celestial Holography. , 2022, Physical review letters.

[5]  D. Grumiller,et al.  Carrollian superconformal theories and super BMS , 2022, Journal of High Energy Physics.

[6]  Yunqin Zheng,et al.  On higher-dimensional Carrollian and Galilean conformal field theories , 2021, SciPost Physics.

[7]  Wei Song,et al.  BMS-invariant free scalar model , 2021, Physical Review D.

[8]  S. Pekar,et al.  Carrollian and Galilean conformal higher-spin algebras in any dimensions , 2021, Journal of High Energy Physics.

[9]  M. M. Sheikh-Jabbari,et al.  Null boundary phase space: slicings, news & memory , 2021, Journal of High Energy Physics.

[10]  G. Korchemsky,et al.  On the light-ray algebra in conformal field theories , 2021, Journal of High Energy Physics.

[11]  M. Henneaux,et al.  Carroll contractions of Lorentz-invariant theories , 2021, Journal of High Energy Physics.

[12]  S. Pasterski Lectures on celestial amplitudes , 2021, The European Physical Journal C.

[13]  A. Raclariu Lectures on Celestial Holography , 2021, 2107.02075.

[14]  G. Korchemsky,et al.  Generalizing event shapes: in search of lost collider time , 2021, Journal of High Energy Physics.

[15]  Kuo-Wei Huang d>2 stress-tensor operator product expansion near a line , 2021, Physical Review D.

[16]  J. de Boer,et al.  On local and integrated stress-tensor commutators , 2020, Journal of High Energy Physics.

[17]  Riccardo Gonzo,et al.  Light-ray operators, detectors and gravitational event shapes , 2020, Journal of High Energy Physics.

[18]  D. Hofman,et al.  On the stress tensor light-ray operator algebra , 2020, Journal of High Energy Physics.

[19]  L. Donnay,et al.  Quantum BMS transformations in conformally flat space-times and holography , 2020, Journal of High Energy Physics.

[20]  Kinjal Banerjee,et al.  Interacting conformal Carrollian theories: Cues from electrodynamics , 2020, Physical Review D.

[21]  M. M. Sheikh-Jabbari,et al.  T-Witts from the horizon , 2020, Journal of High Energy Physics.

[22]  A. Bagchi,et al.  Field theories on null manifolds , 2019, Journal of High Energy Physics.

[23]  Kuo-Wei Huang Stress-tensor commutators in conformal field theories near the lightcone , 2019, Physical Review D.

[24]  R. Leigh,et al.  Carroll structures, null geometry, and conformal isometries , 2019, Physical Review D.

[25]  A. Bagchi,et al.  Field theories with Conformal Carrollian symmetry , 2019, Journal of High Energy Physics.

[26]  M. Henneaux,et al.  Asymptotic structure of a massless scalar field and its dual two-form field at spatial infinity , 2018, Journal of High Energy Physics.

[27]  Clay Córdova,et al.  Light-ray operators and the BMS algebra , 2018, Physical Review D.

[28]  D. Nichols Center-of-mass angular momentum and memory effect in asymptotically flat spacetimes , 2018, Physical Review D.

[29]  D. Simmons-Duffin,et al.  Light-ray operators in conformal field theory , 2018, Journal of High Energy Physics.

[30]  P. Petropoulos,et al.  Covariant Galilean versus Carrollian hydrodynamics from relativistic fluids , 2018, Classical and Quantum Gravity.

[31]  S. Pasterski,et al.  Conformal basis for flat space amplitudes , 2017, 1705.01027.

[32]  A. Strominger Lectures on the Infrared Structure of Gravity and Gauge Theory , 2017, 1703.05448.

[33]  A. Campoleoni,et al.  On higher-spin supertranslations and superrotations , 2017, 1703.01351.

[34]  D. Nichols Spin memory effect for compact binaries in the post-Newtonian approximation , 2017, 1702.03300.

[35]  A. Strominger,et al.  Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere , 2016, 1701.00049.

[36]  A. Zhiboedov,et al.  Superrotations and black hole pair creation , 2016, 1610.00639.

[37]  A. Bagchi,et al.  Flat holography: aspects of the dual field theory , 2016, 1609.06203.

[38]  A. Strominger,et al.  2D Stress Tensor for 4D Gravity. , 2016, Physical review letters.

[39]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[40]  G. Compère,et al.  Vacua of the gravitational field , 2016, 1601.04958.

[41]  Thomas Hartman,et al.  Causality constraints in conformal field theory , 2015, 1509.00014.

[42]  A. Zhiboedov,et al.  New gravitational memories , 2015, 1502.06120.

[43]  Alok Laddha,et al.  New symmetries for the gravitational S-matrix , 2015, 1502.02318.

[44]  Alok Laddha,et al.  Asymptotic symmetries and subleading soft graviton theorem , 2014, 1408.2228.

[45]  G. Gibbons,et al.  Conformal Carroll groups , 2014, 1403.4213.

[46]  G. Gibbons,et al.  Conformal Carroll groups and BMS symmetry , 2014, 1402.5894.

[47]  G. Gibbons,et al.  Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time , 2014, 1402.0657.

[48]  A. Strominger,et al.  On BMS invariance of gravitational scattering , 2013, 1312.2229.

[49]  S. Rychkov,et al.  Spinning conformal blocks , 2011, 1109.6321.

[50]  G. Barnich,et al.  BMS charge algebra , 2011, 1106.0213.

[51]  G. Barnich,et al.  Supertranslations call for superrotations , 2011, 1102.4632.

[52]  A. Bagchi,et al.  Correspondence between asymptotically flat spacetimes and nonrelativistic conformal field theories. , 2010, Physical review letters.

[53]  S. Weinberg Six-dimensional Methods for Four-dimensional Conformal Field Theories , 2010, 1006.3480.

[54]  G. Barnich,et al.  Aspects of the BMS/CFT correspondence , 2010, 1001.1541.

[55]  J. Penedones,et al.  Deep inelastic scattering in conformal QCD , 2009, 0911.0043.

[56]  G. Barnich,et al.  Symmetries of asymptotically flat four-dimensional spacetimes at null infinity revisited. , 2009, Physical review letters.

[57]  J. Maldacena,et al.  Conformal collider physics: energy and charge correlations , 2008, 0803.1467.

[58]  Atsushi Higuchi,et al.  The Unruh effect and its applications , 2007, 0710.5373.

[59]  S. Takagi Vacuum Noise and Stress Induced by Uniform Acceleration Hawking-Unruh Effect in Rindler Manifold of Arbitrary Dimension , 1986 .

[60]  A. Ashtekar,et al.  Symplectic geometry of radiative modes and conserved quantities at null infinity , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[61]  A. Ashtekar Asymptotic Quantization of the Gravitational Field , 1981 .

[62]  R. O. Hansen,et al.  A unified treatment of null and spatial infinity in general relativity. I - Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity , 1978 .

[63]  Y. Zel’dovich,et al.  Radiation of gravitational waves by a cluster of superdense stars , 1974 .

[64]  R. Gatto,et al.  Tensor representations of conformal algebra and conformally covariant operator product expansion , 1973 .

[65]  A. Salam,et al.  Finite-component field representations of the conformal group , 1969 .

[66]  N. Gupta On an analogue of the Galilei group , 1966 .

[67]  S. Weinberg Infrared photons and gravitons , 1965 .

[68]  R. Sachs Asymptotic symmetries in gravitational theory , 1962 .

[69]  R. Sachs Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[70]  Hermann Bondi,et al.  Gravitational waves in general relativity, VII. Waves from axi-symmetric isolated system , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[71]  Paul Adrien Maurice Dirac,et al.  Classical theory of radiating electrons , 1938 .

[72]  P. Dirac Wave equations in conformal space , 1936 .

[73]  Rudolf Haag,et al.  Local quantum physics : fields, particles, algebras , 1993 .

[74]  M. Henneaux Geometry of Zero Signature Space-times , 1979 .

[75]  S. Ferrara,et al.  Conformal Algebra in Space-Time and Operator Product Expansion , 1973 .

[76]  L. Brown,et al.  Deep-Inelastic Electroproduction and Conformal Symmetry , 1970 .

[77]  J. Lévy-leblond,et al.  Une nouvelle limite non-relativiste du groupe de Poincaré , 1965 .