Linguistic aggregation operators of selection criteria in fuzzy information retrieval

A “softening” of the hard Boolean scheme for information retrieval is presented. In this approach, information retrieval is seen as a multicriteria decision‐making activity in which the criteria to be satisfied by the potential solutions, i.e., the archived documents, are the requirements expressed in the query. the retrieval function is then an overall decision function evaluating the degree to which each potential solution satisfies a query consisting of information requirements aggregated by operators. Linguistic quantifiers and a connector dealing with primary and optional criteria are defined and introduced in the query language in order to specify the aggregation criteria of the single query requirements. These criteria make it possible for users to express queries in a simple and self‐explanatory manner. In particular, linguistic quantifiers are defined which capture the intrinsic vagueness of information needs. © 1995 John Wiley & Sons, Inc.

[1]  Abraham Bookstein,et al.  Fuzzy requests: An approach to weighted boolean searches , 1980, J. Am. Soc. Inf. Sci..

[2]  Tadeusz Radecki,et al.  Fuzzy set theoretical approach to document retrieval , 1979, Inf. Process. Manag..

[3]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[4]  Ronald R. Yager,et al.  Second Order Structures in Multi-Criteria Decision Making , 1992, Int. J. Man Mach. Stud..

[5]  Gloria Bordogna,et al.  Query term weights as constraints in fuzzy information retrieval , 1991, Inf. Process. Manag..

[6]  Edward A. Fox,et al.  Research Contributions , 2014 .

[7]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[8]  Donald H. Kraft,et al.  A mathematical model of a weighted boolean retrieval system , 1979, Inf. Process. Manag..

[9]  Donald H. Kraft,et al.  Fuzzy Sets and Generalized Boolean Retrieval Systems , 1983, Int. J. Man Mach. Stud..

[10]  James C. Bezdek,et al.  Knowledge-assisted document retrieval: I. The natural-language interface , 1987, J. Am. Soc. Inf. Sci..

[11]  Tamas E. Doszkocs Natural language processing in information retrieval , 1986 .

[12]  Ronald R. Yager,et al.  Multiple objective decision-making using fuzzy sets , 1977 .

[13]  James C. Bezdek,et al.  Knowledge-assisted document retrieval. II: The retrieval process , 1987 .

[14]  Donald H. Kraft,et al.  Threshold values and Boolean retrieval systems , 1981, Inf. Process. Manag..

[15]  Ronald R. Yager,et al.  Competitiveness and compensation in decision making: A fuzzy set based interpretation , 1980, Comput. Oper. Res..

[16]  Slawomir Zadrozny,et al.  FQUERY III +:a "human-consistent" database querying system based on fuzzy logic with linguistic quantifiers , 1989, Inf. Syst..

[17]  G. Pasi,et al.  A Fuzzy Linguistic Approach Generalizing Boolean Information Retrieval: a Model and its Evaluation , 1993 .

[18]  Ronald R. Yager A note on weighted queries in information retrieval systems , 1987, J. Am. Soc. Inf. Sci..

[19]  Donald H. Kraft,et al.  TIRS: a topological information retrieval system satisfying the requirements of the Waller-Kraft wish list , 1987, SIGIR '87.

[20]  Yaakov Kareev,et al.  What Do You Expect to Get When You Ask for "A Cup of Coffee and a Muffin or a Croissant"? , 1993, Int. J. Man Mach. Stud..

[21]  D. Kraft,et al.  An extended fuzzy linguistic approach to generalize Boolean information retrieval , 1994 .

[22]  Maria Zemankova FILIP: a fuzzy intelligent information system with learning capabilities , 1989, Inf. Syst..