On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming

We describe several adaptive-step primal-dual interior point algorithms for linear programming. All have polynomial time complexity while some allow very long steps in favorable circumstances. We provide heuristic reasoning for expecting that the algorithms will perform much better in practice than guaranteed by the worst-case estimates, based on an analysis using a nonrigorous probabilistic assumption.

[1]  G. Dantzig Expected Number of Steps of the Simplex Method for a Linear Program with a Convexity Constraint. , 1980 .

[2]  G. Sonnevend An "analytical centre" for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming , 1986 .

[3]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[4]  M. Kojima,et al.  A primal-dual interior point algorithm for linear programming , 1988 .

[5]  James Renegar,et al.  A polynomial-time algorithm, based on Newton's method, for linear programming , 1988, Math. Program..

[6]  C. C. Gonzaga,et al.  An algorithm for solving linear programming programs in O(n3L) operations , 1988 .

[7]  R. C. Monteiro,et al.  Interior path following primal-dual algorithms , 1988 .

[8]  Shinji Mizuno,et al.  Anticipated Behavior of Path-Following Algorithms for Linear Programming , 1989 .

[9]  S. Mizuno,et al.  PRACTICAL POLYNOMIAL TIME ALGORITHMS FOR LINEAR COMPLEMENTARITY PROBLEMS , 1989 .

[10]  Shinji Mizuno,et al.  A polynomial-time algorithm for a class of linear complementarity problems , 1989, Math. Program..

[11]  Clyde L. Monma,et al.  An Implementation of a Primal-Dual Interior Point Method for Linear Programming , 1989, INFORMS J. Comput..

[12]  N. Megiddo Pathways to the optimal set in linear programming , 1989 .

[13]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part II: Convex quadratic programming , 1989, Math. Program..

[14]  D. Bayer,et al.  The Non-Linear Geometry of Linear Pro-gramming I: A?ne and projective scaling trajectories , 1989 .

[15]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part I: Linear programming , 1989, Math. Program..

[16]  Michael J. Todd,et al.  A Centered Projective Algorithm for Linear Programming , 1990, Math. Oper. Res..

[17]  Pravin M. Vaidya,et al.  An algorithm for linear programming which requires O(((m+n)n2+(m+n)1.5n)L) arithmetic operations , 1990, Math. Program..

[18]  Shinji Mizuno,et al.  Anticipated Behavior of Long-Step Algorithms for Linear Programming. , 1990 .

[19]  Mauricio G. C. Resende,et al.  A Polynomial-Time Primal-Dual Affine Scaling Algorithm for Linear and Convex Quadratic Programming and Its Power Series Extension , 1990, Math. Oper. Res..

[20]  Josef Stoer,et al.  On the complexity of following the central path of linear programs by linear extrapolation II , 1991, Math. Program..

[21]  Robert M. Freund,et al.  Polynomial-time algorithms for linear programming based only on primal scaling and projected gradients of a potential function , 1991, Math. Program..

[22]  Yinyu Ye,et al.  An O(n3L) potential reduction algorithm for linear programming , 1991, Math. Program..

[23]  Shinji Mizuno,et al.  An $$O(\sqrt n L)$$ iteration potential reduction algorithm for linear complementarity problems , 1991, Math. Program..

[24]  Raimund Seidel,et al.  Small-dimensional linear programming and convex hulls made easy , 1991, Discret. Comput. Geom..

[25]  C. C. Gonzaga,et al.  An (O√(n) L)-Iteration Large-Step Primal-Dual Affine Algorithm for Linear Programming , 1992, SIAM J. Optim..

[26]  Kurt M. Anstreicher,et al.  Long steps in an O(n3L) algorithm for linear programming , 1992, Math. Program..

[27]  Shinji Mizuno,et al.  A new polynomial time method for a linear complementarity problem , 1992, Math. Program..

[28]  Yin Zhang,et al.  On the Superlinear and Quadratic Convergence of Primal-Dual Interior Point Linear Programming Algorithms , 1992, SIAM J. Optim..

[29]  J. Stoer,et al.  Estimating the complexity of a class of path-following methods for solving linear programs by curvature integrals , 1993 .