Aptamer technology for tracking cells’ status & function

In fields such as cancer biology and regenerative medicine, obtaining information regarding cell bio-distribution, tropism, status, and other cellular functions are highly desired. Understanding cancer behaviors including metastasis is important for developing effective cancer treatments, while assessing the fate of therapeutic cells following implantation is critical to validate the efficacy and efficiency of the therapy. For visualization purposes with medical imaging modalities (e.g. magnetic resonance imaging), cells can be labeled with contrast agents (e.g. iron-oxide nanoparticles), which allows their identification from the surrounding environment. Despite the success of revealing cell biodistribution in vivo, most of the existing agents do not provide information about the status and functions of cells following transplantation. The emergence of aptamers, single-stranded RNA or DNA oligonucleotides of 15 to 60 bases in length, is a promising solution to address this need. When aptamers bind specifically to their cognate molecules, they undergo conformational changes which can be transduced into a change of imaging contrast (e.g. optical, magnetic resonance). Thus by monitoring this signal change, researchers can obtain information about the expression of the target molecules (e.g. mRNA, surface markers, cell metabolites), which offer clues regarding cell status/function in a non-invasive manner. In this review, we summarize recent efforts to utilize aptamers as biosensors for monitoring the status and function of transplanted cells. We focus on cancer cell tracking for cancer study, stem cell tracking for regenerative medicine, and immune cell (e.g. dendritic cells) tracking for immune therapy.

[1]  J. McNeal,et al.  Origin and development of carcinoma in the prostate , 1969, Cancer.

[2]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[3]  P. Horan,et al.  Fluorescent cell labeling for in vivo and in vitro cell tracking. , 1990, Methods in cell biology.

[4]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[5]  J. Szostak,et al.  A DNA aptamer that binds adenosine and ATP. , 1995, Biochemistry.

[6]  D. Carbone,et al.  Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells , 1996, Nature Medicine.

[7]  D. Carbone,et al.  Erratum: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells (Nature Medicine 2, 1096-1103 (1996)) , 1996 .

[8]  F. Sallusto,et al.  Origin, maturation and antigen presenting function of dendritic cells. , 1997, Current opinion in immunology.

[9]  J. Sennello,et al.  In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. , 1997, Chemistry & biology.

[10]  R. Steinman,et al.  Dendritic cells and the control of immunity , 1998, Nature.

[11]  J. Szostak,et al.  Isolation of a fluorophore-specific DNA aptamer with weak redox activity. , 1998, Chemistry & biology.

[12]  S. Gill,et al.  Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys. , 1999, Journal of chromatography. B, Biomedical sciences and applications.

[13]  Babeş,et al.  Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents: A Parametric Study. , 1999, Journal of colloid and interface science.

[14]  R. Lauffer,et al.  Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. , 1999, Chemical reviews.

[15]  M. Famulok,et al.  Nucleic acid aptamers-from selection in vitro to applications in vivo. , 2000, Accounts of chemical research.

[16]  B. Sullenger,et al.  Developing aptamers into therapeutics. , 2000, The Journal of clinical investigation.

[17]  L. Gold,et al.  Aptamers as therapeutic and diagnostic agents. , 2000, Journal of biotechnology.

[18]  D. Hanahan,et al.  MMP-9 Supplied by Bone Marrow–Derived Cells Contributes to Skin Carcinogenesis , 2000, Cell.

[19]  M. Stojanović,et al.  Aptamer-based folding fluorescent sensor for cocaine. , 2001, Journal of the American Chemical Society.

[20]  F. Lee,et al.  BMS-247550: a novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor efficacy. , 2001, Clinical cancer research : an official journal of the American Association for Cancer Research.

[21]  I. Weissman,et al.  Stem cells, cancer, and cancer stem cells , 2001, Nature.

[22]  Ira Mellman,et al.  Dendritic Cells Specialized and Regulated Antigen Processing Machines , 2001, Cell.

[23]  P. Bianco,et al.  Stem cells in tissue engineering , 2001, Nature.

[24]  R. Nicholson,et al.  EGFR and cancer prognosis. , 2001, European journal of cancer.

[25]  L. Griffith,et al.  Tissue Engineering--Current Challenges and Expanding Opportunities , 2002, Science.

[26]  Gerold Schuler,et al.  Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? , 2002, Trends in immunology.

[27]  R. Weissleder,et al.  Optical-based molecular imaging: contrast agents and potential medical applications , 2003, European Radiology.

[28]  C. O’Sullivan Aptasensors – the future of biosensing? , 2002, Analytical and bioanalytical chemistry.

[29]  Hans Wolf,et al.  An aptamer-based quartz crystal protein biosensor. , 2002, Analytical chemistry.

[30]  Eva M Sevick-Muraca,et al.  Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. , 2002, Current opinion in chemical biology.

[31]  S. Rafii,et al.  Recruitment of Stem and Progenitor Cells from the Bone Marrow Niche Requires MMP-9 Mediated Release of Kit-Ligand , 2002, Cell.

[32]  G. Mundy Metastasis: Metastasis to bone: causes, consequences and therapeutic opportunities , 2002, Nature Reviews Cancer.

[33]  Raphaël Boisgard,et al.  Labelled oligonucleotides as radiopharmaceuticals: pitfalls, problems and perspectives. , 2002, Current pharmaceutical design.

[34]  Siqing Shan,et al.  Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Christopher H Contag,et al.  Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. , 2003, Blood.

[36]  Weihong Tan,et al.  Synthetic DNA Aptamers to Detect Protein Molecular Variants in a High‐Throughput Fluorescence Quenching Assay , 2003, Chembiochem : a European journal of chemical biology.

[37]  S. Klußmann,et al.  Short bioactive Spiegelmers to migraine-associated calcitonin gene-related peptide rapidly identified by a novel approach: tailored-SELEX. , 2003, Nucleic acids research.

[38]  Y. Kooyk,et al.  DC-SIGN: escape mechanism for pathogens , 2003, Nature Reviews Immunology.

[39]  B. Sullenger,et al.  Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity. , 2003, Cancer research.

[40]  C. Figdor,et al.  Dendritic cell immunotherapy: mapping the way , 2004, Nature Medicine.

[41]  Thomas Beyer,et al.  To enhance or not to enhance? 18F-FDG and CT contrast agents in dual-modality 18F-FDG PET/CT. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[42]  Volker A Erdmann,et al.  Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. , 2004, Nucleic acids research.

[43]  Bertrand Tavitian,et al.  Neutralizing Aptamers from Whole-Cell SELEX Inhibit the RET Receptor Tyrosine Kinase , 2005, PLoS biology.

[44]  Vasilis Ntziachristos,et al.  Looking and listening to light: the evolution of whole-body photonic imaging , 2005, Nature Biotechnology.

[45]  F. Marshall,et al.  In vivo molecular and cellular imaging with quantum dots. , 2005, Current opinion in biotechnology.

[46]  F. Ducongé,et al.  Aptamers against extracellular targets for in vivo applications. , 2005, Biochimie.

[47]  M. Pittenger,et al.  Human mesenchymal stem cells modulate allogeneic immune cell responses. , 2005, Blood.

[48]  Juewen Liu,et al.  Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. , 2005, Angewandte Chemie.

[49]  Frank P Barry,et al.  Mesenchymal stem cells avoid allogeneic rejection , 2005, Journal of Inflammation.

[50]  Weihong Tan,et al.  Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. , 2005, Analytical chemistry.

[51]  Anthony D. Keefe,et al.  Direct in vitro selection of a 2'-O-methyl aptamer to VEGF. , 2005, Chemistry & biology.

[52]  Weihong Tan,et al.  Investigation of Molecular Beacon Aptamer‐Based Bioassay for Platelet‐Derived Growth Factor Detection , 2005, Chembiochem : a European journal of chemical biology.

[53]  D. Shangguan,et al.  Aptamers evolved from live cells as effective molecular probes for cancer study , 2006, Proceedings of the National Academy of Sciences.

[54]  Daniel J. Hoeppner,et al.  Notch signalling regulates stem cell numbers in vitro and in vivo , 2006, Nature.

[55]  Marc Kachelriess,et al.  Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[56]  Yong Wang,et al.  Cell type–specific delivery of siRNAs with aptamer-siRNA chimeras , 2006, Nature Biotechnology.

[57]  Ciara K O'Sullivan,et al.  Aptamer conformational switch as sensitive electrochemical biosensor for potassium ion recognition. , 2006, Chemical communications.

[58]  Hanns-Ulrich Marschall,et al.  Mesenchymal Stem Cells for Treatment of Therapy-Resistant Graft-versus-Host Disease , 2006, Transplantation.

[59]  Ying-Fon Chang,et al.  Tumor targeting by an aptamer. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[60]  Gerhard Ziemer,et al.  A New Technique for the Isolation and Surface Immobilization of Mesenchymal Stem Cells from Whole Bone Marrow Using High‐Specific DNA Aptamers , 2006, Stem cells.

[61]  Andrew D. Ellington,et al.  Aptamer mediated siRNA delivery , 2006, Nucleic acids research.

[62]  E. Wang,et al.  Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. , 2007, Chemical communications.

[63]  Kemin Wang,et al.  Selection of aptamers for molecular recognition and characterization of cancer cells. , 2007, Analytical chemistry.

[64]  Michael Famulok,et al.  Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. , 2007, Chemical reviews.

[65]  C D Claussen,et al.  Aptamer-based isolation and subsequent imaging of mesenchymal stem cells in ischemic myocard by magnetic resonance imaging. , 2007, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[66]  Jian-hua Zhu,et al.  Selection of DNA aptamers against DC-SIGN protein , 2007, Molecular and Cellular Biochemistry.

[67]  C. Kielty,et al.  Mesenchymal stem cells and neovascularization: role of platelet-derived growth factor receptors , 2007, Journal of cellular and molecular medicine.

[68]  D. Prockop,et al.  Concise Review: Mesenchymal Stem/Multipotent Stromal Cells: The State of Transdifferentiation and Modes of Tissue Repair—Current Views , 2007, Stem cells.

[69]  Ariel D. Anbar,et al.  Aptamers Evolved from Cultured Cancer Cells Reveal Molecular Differences of Cancer Cells in Patient Samples , 2007 .

[70]  E. Lam,et al.  Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth , 2007, Leukemia.

[71]  Sangjin Park,et al.  Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. , 2007, Journal of the American Chemical Society.

[72]  A. Caplan Adult mesenchymal stem cells for tissue engineering versus regenerative medicine , 2007, Journal of cellular physiology.

[73]  N. Gallay,et al.  The In Vitro Migration Capacity of Human Bone Marrow Mesenchymal Stem Cells: Comparison of Chemokine and Growth Factor Chemotactic Activities , 2007, Stem cells.

[74]  Robert Langer,et al.  Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. , 2007, Nano letters.

[75]  M Geso,et al.  Gold nanoparticles: a new X-ray contrast agent. , 2007, The British journal of radiology.

[76]  Chenjie Xu,et al.  Size and Concentration Effect of Gold Nanoparticles on X-ray Attenuation As Measured on Computed Tomography. , 2008, Chemistry of materials : a publication of the American Chemical Society.

[77]  J. McNamara,et al.  Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. , 2008, The Journal of clinical investigation.

[78]  B. Sullenger,et al.  Assembling OX40 aptamers on a molecular scaffold to create a receptor-activating aptamer. , 2008, Chemistry & biology.

[79]  S. Barth,et al.  Cell-specific induction of apoptosis by rationally designed bivalent aptamer-siRNA transcripts silencing eukaryotic elongation factor 2. , 2008, Current cancer drug targets.

[80]  Robert Langer,et al.  Superparamagnetic Iron Oxide Nanoparticle-Aptamer Bioconjugates for Combined Prostate Cancer Imaging and Therapy , 2011 .

[81]  Sergey N Krylov,et al.  Aptamer-facilitated biomarker discovery (AptaBiD). , 2008, Journal of the American Chemical Society.

[82]  Anthony D. Keefe,et al.  SELEX with modified nucleotides. , 2008, Current opinion in chemical biology.

[83]  Jacco van Rheenen,et al.  Intravital imaging of metastatic behavior through a mammary imaging window , 2008, Nature Methods.

[84]  M. Gnecchi,et al.  Paracrine Mechanisms in Adult Stem Cell Signaling and Therapy , 2008, Circulation research.

[85]  Weihong Tan,et al.  Cell-specific internalization study of an aptamer from whole cell selection. , 2008, Chemistry.

[86]  Stephanie Alexander,et al.  Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model , 2008, Histochemistry and Cell Biology.

[87]  Chi‐hong B. Chen,et al.  Aptamer-based endocytosis of a lysosomal enzyme , 2008, Proceedings of the National Academy of Sciences.

[88]  Xiaoling Zhang,et al.  Molecular Assembly of an Aptamer–Drug Conjugate for Targeted Drug Delivery to Tumor Cells , 2009, Chembiochem : a European journal of chemical biology.

[89]  C. Shao,et al.  Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1 , 2009, Leukemia.

[90]  M. Estévez,et al.  Using aptamer-conjugated fluorescence resonance energy transfer nanoparticles for multiplexed cancer cell monitoring. , 2009, Analytical chemistry.

[91]  Sanjiv S. Gambhir,et al.  Trafficking Mesenchymal Stem Cell Engraftment and Differentiation in Tumor‐Bearing Mice by Bioluminescence Imaging , 2009, Stem cells.

[92]  A. Perkins,et al.  Anti-MUC1 aptamers: radiolabelling with (99m)Tc and biodistribution in MCF-7 tumour-bearing mice. , 2009, Nuclear medicine and biology.

[93]  Won Jun Kang,et al.  Multiplex imaging of single tumor cells using quantum-dot-conjugated aptamers. , 2009, Small.

[94]  M. Estévez,et al.  Nanoparticle-aptamer conjugates for cancer cell targeting and detection. , 2010, Methods in molecular biology.

[95]  T. Brown,et al.  New strategy for the synthesis of chemically modified RNA constructs exemplified by hairpin and hammerhead ribozymes , 2010, Proceedings of the National Academy of Sciences.

[96]  B. Sullenger,et al.  In vivo selection of tumor-targeting RNA motifs , 2009, Nature chemical biology.

[97]  P. Harari,et al.  Understanding resistance to EGFR inhibitors—impact on future treatment strategies , 2010, Nature Reviews Clinical Oncology.

[98]  D. Shangguan,et al.  Development of DNA aptamers using Cell-SELEX , 2010, Nature Protocols.

[99]  A. Ellington,et al.  Directed evolution of gold nanoparticle delivery to cells. , 2010, Chemical communications.

[100]  Y. Jeong,et al.  A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. , 2010, ACS nano.

[101]  Sung Ho Ryu,et al.  A Nucleolin-Targeted Multimodal Nanoparticle Imaging Probe for Tracking Cancer Cells Using an Aptamer , 2010, Journal of Nuclear Medicine.

[102]  R. Dubridge,et al.  The immunogenicity of humanized and fully human antibodies , 2010, mAbs.

[103]  K. Thompson,et al.  Discovery and development of therapeutic aptamers. , 2010, Annual review of pharmacology and toxicology.

[104]  Weihong Tan,et al.  DNA Aptamers as Molecular Probes for Colorectal Cancer Study , 2010, PloS one.

[105]  Xiaohong Fang,et al.  Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. , 2010, Accounts of chemical research.

[106]  L. Cerchia,et al.  Targeting cancer cells with nucleic acid aptamers. , 2010, Trends in biotechnology.

[107]  Using live cells to generate aptamers for cancer study. , 2010, Methods in molecular biology.

[108]  Muhammad Ali Syed,et al.  Advances in aptamers. , 2010, Oligonucleotides.

[109]  O. Lindvall,et al.  Stem cells in human neurodegenerative disorders--time for clinical translation? , 2010, The Journal of clinical investigation.

[110]  J. Rossi,et al.  Aptamer-targeted cell-specific RNA interference , 2010, Silence.

[111]  W. Liu,et al.  Degradation or excretion of quantum dots in mouse embryonic stem cells , 2010, BMC biotechnology.

[112]  Kemin Wang,et al.  In vivo fluorescence imaging of tumors using molecular aptamers generated by cell-SELEX. , 2010, Chemistry, an Asian journal.

[113]  T. Minko,et al.  Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[114]  Kemin Wang,et al.  Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration , 2011, Proceedings of the National Academy of Sciences.

[115]  W. Duan,et al.  RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule , 2011, Cancer science.

[116]  W. M. Rockey,et al.  Synthesis and radiolabeling of chelator-RNA aptamer bioconjugates with copper-64 for targeted molecular imaging. , 2011, Bioorganic & medicinal chemistry.

[117]  Kevin W Plaxco,et al.  Switch-based biosensors: a new approach towards real-time, in vivo molecular detection. , 2011, Trends in biotechnology.

[118]  J Christopher Love,et al.  Cell-surface sensors for real-time probing of cellular environments. , 2011, Nature nanotechnology.

[119]  F. Ducongé,et al.  Metastasis‐focused cell‐based SELEX generates aptamers inhibiting cell migration and invasion , 2011, International journal of cancer.

[120]  Stanislav Y. Emelianov,et al.  In vivo Ultrasound and Photoacoustic Monitoring of Mesenchymal Stem Cells Labeled with Gold Nanotracers , 2012, PloS one.

[121]  Yoshikazu Nakamura,et al.  Selection of RNA aptamers against mouse embryonic stem cells. , 2012, Biochimie.

[122]  Omid C Farokhzad,et al.  Aptamer-functionalized nanoparticles for medical applications: challenges and opportunities. , 2012, ACS nano.

[123]  D. Phinney Functional heterogeneity of mesenchymal stem cells: Implications for cell therapy , 2012, Journal of cellular biochemistry.

[124]  K. Kakimi,et al.  [Dendritic cells for cancer immunotherapy]. , 2012, Nihon rinsho. Japanese journal of clinical medicine.

[125]  G. Daley,et al.  The promise and perils of stem cell therapeutics. , 2012, Cell stem cell.

[126]  U. Hahn,et al.  Interleukin-6 receptor specific RNA aptamers for cargo delivery into target cells , 2012, RNA biology.

[127]  S. M. Taghdisi,et al.  Epirubicin loaded super paramagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo. , 2013, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[128]  Brian E. McIntosh,et al.  Development of an Efficient Targeted Cell-SELEX Procedure for DNA Aptamer Reagents , 2013, PloS one.

[129]  I. Weissman,et al.  Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies , 2013, Nature Medicine.

[130]  Chenjie Xu,et al.  Stem cell tracking with optically active nanoparticles. , 2013, American journal of nuclear medicine and molecular imaging.

[131]  J. Bulte,et al.  Tracking immune cells in vivo using magnetic resonance imaging , 2013, Nature Reviews Immunology.

[132]  Mark A Behlke,et al.  In vivo SELEX for Identification of Brain-penetrating Aptamers , 2013, Molecular therapy. Nucleic acids.

[133]  Hyundong Yoo,et al.  Multivalent comb-type aptamer-siRNA conjugates for efficient and selective intracellular delivery. , 2014, Chemical communications.

[134]  S. Almo,et al.  Aptamer-targeted Antigen Delivery , 2014, Molecular therapy : the journal of the American Society of Gene Therapy.

[135]  U. Hahn,et al.  Chlorin e6 Conjugated Interleukin-6 Receptor Aptamers Selectively Kill Target Cells Upon Irradiation , 2014, Molecular therapy. Nucleic acids.

[136]  John J. Rossi,et al.  Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy , 2014, Molecular therapy. Nucleic acids.

[137]  L. Marchetti,et al.  Two Interconvertible Folds Modulate the Activity of a DNA Aptamer Against Transferrin Receptor , 2014, Molecular therapy. Nucleic acids.

[138]  Cell-SELEX-based selection of aptamers that recognize distinct targets on metastatic colorectal cancer cells. , 2014, Biomaterials.

[139]  Abhishek Parashar,et al.  Aptamers in Therapeutics. , 2016, Journal of clinical and diagnostic research : JCDR.