Space weathering and the interpretation of asteroid reflectance spectra

Abstract Lunar-style space weathering is well understood, but cannot be extended to asteroids in general. The two best studied Asteroids (433 Eros and 243 Ida) exhibit quite different space weathering styles, and neither exhibits lunar-style space weathering. It must be concluded that at this time the diversity and mechanisms of asteroid space weathering are poorly understood. This introduces a significant unconstrained variable into the problem of analyzing asteroid spectral data. The sensitivity of asteroid surface material characterizations to space weathering effects – whatever their nature – is strongly dependent upon the choice of remote sensing methodology. The effects of space weathering on some methodologies such as curve matching are potentially devastating and at the present time essentially unmitigated. On other methodologies such as parametric analysis (e.g., analyses based on band centers and band area ratios) the effects are minimal. By choosing the appropriate methodology(ies) applied to high quality spectral data, robust characterizations of asteroid surface mineralogy can be obtained almost irrespective of space weathering. This permits sophisticated assessments of the geologic history of the asteroid parent bodies and of their relationships to the meteorites. Investigations of the diversity of space weathering processes on asteroid surfaces should be a fruitful area for future efforts.

[1]  A. McEwen,et al.  Ida and Dactyl: Spectral reflectance and color variations , 1996 .

[2]  M J Gaffey,et al.  Phyllosilicate Absorption Features in Main-Belt and Outer-Belt Asteroid Reflectance Spectra , 1989, Science.

[3]  Hideo Ohashi,et al.  Simulation of space weathering of planet-forming materials: Nanosecond pulse laser irradiation and proton implantation on olivine and pyroxene samples , 1999 .

[4]  R. Jedicke,et al.  Redetermination of the space weathering rate using spectra of Iannini asteroid family members , 2008, 0802.2977.

[5]  S. Murchie,et al.  Color Variations on Eros from NEAR Multispectral Imaging , 2002 .

[6]  E. Fischer,et al.  Composition and exposure age of the Apollo 16 Cayley and Descartes regions from Clementine data: Normalizing the optical effects of space weathering , 1996 .

[7]  M. Gaffey,et al.  Asteroids: Surface Composition from Reflection Spectroscopy , 1974, Science.

[8]  John W. Salisbury,et al.  Midinfrared (2.5–13.5 μm) reflectance spectra of powdered stony meteorites , 1991 .

[9]  J. Salisbury,et al.  Comparisons of meteorite and asteroid spectral reflectivities , 1973 .

[10]  Michael J. Gaffey,et al.  Asteroid 6 Hebe: The probable parent body of the H‐type ordinary chondrites and the IIE iron meteorites , 1998 .

[11]  J. Veverka,et al.  The wavelength dependence of phase coefficients , 1986 .

[12]  C. Pieters,et al.  Optical Effects of Regolith Processes on S-Asteroids as Simulated by Laser Shots on Ordinary Chondrite and Other Mafic Materials , 1996 .

[13]  Roger G. Burns,et al.  Crystal field spectra and evidence of cation ordering in olivine minerals , 1970 .

[14]  Harry Y. McSween,et al.  Meteorites and the early solar system II , 2006 .

[15]  T. Roush,et al.  Optical characterization of laser ablated silicates , 2007 .

[16]  A. Rubin,et al.  Size scales over which ordinary chondrites and their parent asteroids are homogeneous in oxidation state and oxygen-isotopic composition , 2008 .

[17]  Bruce Hapke,et al.  Space weathering from Mercury to the asteroid belt , 2001 .

[18]  R. V. Morris,et al.  Spectral reflectance‐compositional properties of spinels and chromites: Implications for planetary remote sensing and geothermometry , 2004 .

[19]  T. Hiroi,et al.  Grain size of the surface regolith of asteroid 4 Vesta estimated from its reflectance spectrum in comparison with HED meteorites , 1994 .

[20]  T. McCord,et al.  Optical properties of mineral separates, glass, and anorthositic fragments from Apollo mare samples , 1971 .

[21]  W. Calvin,et al.  Spectral characteristics of iron‐bearing phyllosilicates: Comparison to Orgueil (CI1), Murchison and Murray (CM2) , 1997 .

[22]  J. Veverka,et al.  Effects of body shape on disk-integrated spectral reflectance , 1982 .

[23]  C. Pieters,et al.  Evidence of space weathering in regolith breccias I: Lunar regolith breccias , 2005 .

[24]  W. Hartmann,et al.  The Meteorite-Asteroid Connection: Two Olivine-Rich Asteroids , 1984, Science.

[25]  Michael J. Gaffey,et al.  Mineralogy of Asteroids , 2011 .

[26]  S. Marchi,et al.  Towards a general model of space weathering of S-complex asteroids and ordinary chondrites , 2007 .

[27]  Cesare Barbieri,et al.  Visible and near-infrared spectroscopic investigation of near-Earth objects at ESO: first results☆ , 2004 .

[28]  D. Tholen,et al.  Global mapping of the degree of space weathering on asteroid 25143 Itokawa by Hayabusa/AMICA observations , 2007 .

[29]  R. Clark,et al.  High spectral resolution reflectance spectroscopy of minerals , 1990 .

[30]  Michael J. Gaffey,et al.  Pyroxene spectroscopy revisited - Spectral-compositional correlations and relationship to geothermometry , 1991 .

[31]  S. Sasaki,et al.  Laboratory simulation of space weathering: ESR measurements of nanophase metallic iron in laser-irradiated materials , 2002 .

[32]  Y. Shkuratov,et al.  Iron and Titanium Abundance and Maturity Degree Distribution on the Lunar Nearside , 1999 .

[33]  Clark R. Chapman,et al.  SPACE WEATHERING OF ASTEROID SURFACES , 2004 .

[34]  Timothy H. McConnochie,et al.  E‐type asteroid spectroscopy and compositional modeling , 2004 .

[35]  Adriana Maras,et al.  Space weathering, reddening and gardening of asteroids: A complex problem , 2007 .

[36]  John B. Adams,et al.  Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system , 1974 .

[37]  Hiroshi Takeda,et al.  Reflectance spectroscopy and mineralogy of primitive achondrites-lodranites , 1991 .

[38]  Sho Sasaki,et al.  Simulation of space weathering by nanosecond pulse laser heating: dependence on mineral composition, weathering trend of asteroids and discovery of nanophase iron particles , 2002 .

[39]  R. Brunetto,et al.  Space Weathering in the Main Asteroid Belt: The Big Picture , 2006 .

[40]  D. Gandolfi,et al.  Space weathering of near-Earth and main belt silicate-rich asteroids: observations and ion irradiation experiments , 2005 .

[41]  A. Harris,et al.  A portrait of 4979 Otawara, target of the Rosetta space mission , 2003 .

[42]  E. Cloutis Pyroxene reflectance spectra: Minor absorption bands and effects of elemental substitutions , 2002 .

[43]  M. Barucci,et al.  Spectral alteration of the Meteorite Epinal (H5) induced by heavy ion irradiation: a simulation of space weathering effects on near-Earth asteroids , 2005 .

[44]  Sho Sasaki,et al.  Developing space weathering on the asteroid 25143 Itokawa , 2006, Nature.

[45]  R. Binzel,et al.  High‐calcium pyroxene as an indicator of igneous differentiation in asteroids and meteorites , 2004 .

[46]  John B. Adams,et al.  Spectral reflectance 0.4 to 2.0 microns of silicate rock powders. , 1967 .

[47]  Sho Sasaki,et al.  Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering , 2001, Nature.

[48]  M. Fulchignoni,et al.  Near-IR spectroscopy of asteroids 21 Lutetia, 89 Julia, 140 Siwa, 2181 Fogelin and 5480 (1989YK8), potential targets for the Rosetta mission; remote observations campaign on IRTF , 2003, astro-ph/0312638.

[49]  Richard V. Morris,et al.  The optical properties of the finest fraction of lunar soil: Implications for space weathering , 2001 .

[50]  L. Taylor,et al.  Using the modified Gaussian model to extract quantitative data from lunar soils , 2006 .

[51]  Klaus Keil,et al.  Thermal alteration of asteroids: evidence from meteorites , 2000 .

[52]  Paul G. Lucey,et al.  Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet‐visible images , 2000 .

[53]  S. Murchie,et al.  Space weathering on Eros: Constraints from albedo and spectral measurements of Psyche crater , 2001 .

[54]  R. Baragiola,et al.  Laboratory simulations of redeposition of impact ejecta on mineral surfaces , 2008 .

[55]  Michael J. Gaffey,et al.  Spectral reflectance characteristics of the meteorite classes , 1976 .

[56]  T. Hiroi,et al.  Origin of vestoids suggested from the space weathering trend in the visible reflectance spectra of HED meteorites and lunar soils , 1998 .

[57]  Richard P. Binzel,et al.  An extension of the Bus asteroid taxonomy into the near-infrared , 2009 .

[58]  Sho Sasaki,et al.  Laboratory simulation of space weathering: Changes of optical properties and TEM/ESR confirmation of nanophase metallic iron , 2003 .

[59]  B. Clark Spectral mixing models of S‐type asteroids , 1995 .

[60]  T. Mccoy,et al.  Systematics and Evaluation of Meteorite Classification , 2006 .

[61]  N. Takato,et al.  Mature and Fresh Surfaces on the Newborn Asteroid Karin , 2004 .

[62]  T. McCord,et al.  Application of Remote Spectral Reflectance Measurements to Lunar Geology Classification and Determination of Titanium Content of Lunar Soils , 1974 .

[63]  M. Malin,et al.  Near-IR Reflectance Spectroscopy of 433 Eros from the NIS Instrument on the NEAR Mission: I. Low Phase Angle Observations , 2002 .

[64]  W. Ridley,et al.  Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing implications , 1987 .

[65]  A. McEwen,et al.  Galileo Photometry of Asteroid 243 Ida , 1996 .

[66]  Mirel Birlan,et al.  Modeling asteroid surfaces from observations and irradiation experiments: The case of 832 Karin , 2006 .

[67]  Jennifer L. Piatek,et al.  Mineralogical Variations within the S-Type Asteroid Class , 1993 .

[68]  R. V. Morris,et al.  The surface exposure /maturity/ of lunar soils - Some concepts and I sub s/FeO compilation , 1978 .

[69]  Carle M. Pieters,et al.  Remote Determination of Exposure Degree and Iron Concentration of Lunar Soils Using VIS-NIR Spectroscopic Methods , 1994 .

[70]  S. Fonti,et al.  Space weathering of silicates simulated by nanosecond pulse UV excimer laser , 2006 .

[71]  U. Fink,et al.  Spectral observations of 19 weathered and 23 fresh NEAs and their correlations with orbital parameters , 2007 .

[72]  Richard V. Morris,et al.  Space weathering on airless bodies: Resolving a mystery with lunar samples , 2000 .

[73]  C. Dukes,et al.  Irradiation of olivine by 4 keV He+: Simulation of space weathering by the solar wind , 2009 .

[74]  Paul G. Lucey,et al.  Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery , 1998 .

[75]  John W. Salisbury,et al.  Meteorite-asteroid spectral comparison: The effects of comminution, melting, and recrystallization , 1992 .

[76]  Robert Jedicke,et al.  Evidence for asteroid space weathering from the Sloan Digital Sky Survey , 2005 .

[77]  Dale P. Cruikshank,et al.  Three basaltic earth-approaching asteroids and the source of the basaltic meteorites , 1991 .

[78]  G. J. Taylor,et al.  Abundance and Distribution of Iron on the Moon , 1995, Science.

[79]  R. Binzel,et al.  Chips off of Asteroid 4 Vesta: Evidence for the Parent Body of Basaltic Achondrite Meteorites , 1993, Science.

[80]  A. Kryszczyńska,et al.  Near infra-red spectroscopy of the asteroid 21 Lutetia - II. Rotationally resolved spectroscopy of the surface , 2007 .

[81]  John B. Adams,et al.  4 – INTERPRETATION OF VISIBLE AND NEAR-INFRARED DIFFUSE REFLECTANCE SPECTRA OF PYROXENES AND OTHER ROCK-FORMING MINERALS , 1975 .

[82]  Clark R. Chapman,et al.  S-Type Asteroids, Ordinary Chondrites, and Space Weathering: The Evidence from Galileo's Fly-bys of Gaspra and Ida , 1996 .

[83]  Richard V. Morris,et al.  The effects of space weathering on Apollo 17 mare soils: Petrographie and chemical characterization , 2001 .

[84]  Carle M. Pieters,et al.  An experimental approach to understanding the optical effects of space weathering , 2007 .

[85]  M. Birlan,et al.  Spectral properties of nine M-type asteroids , 2007 .

[86]  C. Karr Infrared and Raman spectroscopy of lunar and terrestrial minerals , 1975 .

[87]  J. B. Adams,et al.  Spectral Reflectivity of Lunar Samples , 1970, Science.

[88]  R. Morris Surface exposure indices of lunar soils: a comparative FMR study. , 1976 .

[89]  M. Lazzarin,et al.  A General Spectral Slope-Exposure Relation for S-Type Main Belt and Near-Earth Asteroids , 2006 .

[90]  T. Hiroi,et al.  Importance of space weathering simulation products in compositional modeling of asteroids: 349 Dembowska and 446 Aeternitas as examples , 2001 .

[91]  Robert Jedicke,et al.  An age–colour relationship for main-belt S-complex asteroids , 2004, Nature.

[92]  Michael J. Gaffey,et al.  Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra , 1986 .