A latent model for collaborative filtering

Recommender systems based on collaborative filtering have received a great deal of interest over the last two decades. In particular, recently proposed methods based on dimensionality reduction techniques and using a symmetrical representation of users and items have shown promising results. Following this line of research, we propose a probabilistic collaborative filtering model that explicitly represents all items and users simultaneously in the model. Experimental results show that the proposed system obtains significantly better results than other collaborative filtering systems (evaluated on the MovieLens data set). Furthermore, the explicit representation of all users and items allows the model to e.g. make group-based recommendations balancing the preferences of the individual users.

[1]  Luo Si,et al.  Flexible Mixture Model for Collaborative Filtering , 2003, ICML.

[2]  Thomas D. Nielsen,et al.  Latent Classification Models , 2005, Machine Learning.

[3]  Hans-Peter Kriegel,et al.  Infinite Hidden Relational Models , 2006, UAI.

[4]  D. Heckerman,et al.  Dependency networks for inference , 2000 .

[5]  David Maxwell Chickering,et al.  Dependency Networks for Inference, Collaborative Filtering, and Data Visualization , 2000, J. Mach. Learn. Res..

[6]  Tommi S. Jaakkola,et al.  Weighted Low-Rank Approximations , 2003, ICML.

[7]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[8]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[9]  Luis M. de Campos,et al.  Combining content-based and collaborative recommendations: A hybrid approach based on Bayesian networks , 2010, Int. J. Approx. Reason..

[10]  Svetha Venkatesh,et al.  Preference Networks: Probabilistic Models for Recommendation Systems , 2007, AusDM.

[11]  Judith Masthoff,et al.  Group Recommender Systems: Combining Individual Models , 2011, Recommender Systems Handbook.

[12]  Xiaojun Wu,et al.  Graph Regularized Nonnegative Matrix Factorization for Data Representation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Luo Si,et al.  A study of mixture models for collaborative filtering , 2006, Information Retrieval.

[14]  Eric Horvitz,et al.  Collaborative Filtering by Personality Diagnosis: A Hybrid Memory and Model-Based Approach , 2000, UAI.

[15]  John Riedl,et al.  An algorithmic framework for performing collaborative filtering , 1999, SIGIR '99.

[16]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[17]  Geoffrey E. Hinton,et al.  Restricted Boltzmann machines for collaborative filtering , 2007, ICML '07.

[18]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[19]  Xin Jin,et al.  Semantically Enhanced Collaborative Filtering on the Web , 2003, EWMF.

[20]  Jun Wang,et al.  Unifying user-based and item-based collaborative filtering approaches by similarity fusion , 2006, SIGIR.

[21]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[22]  Bong-Jin Yum,et al.  Collaborative filtering based on iterative principal component analysis , 2005, Expert Syst. Appl..

[23]  Ruslan Salakhutdinov,et al.  Bayesian probabilistic matrix factorization using Markov chain Monte Carlo , 2008, ICML '08.

[24]  Kenneth Y. Goldberg,et al.  Jester 2.0 (poster abstract): evaluation of an new linear time collaborative filtering algorithm , 1999, SIGIR '99.

[25]  Jian Chen,et al.  Recommendation Based on Influence Sets , 2006 .

[26]  George Lekakos,et al.  A hybrid approach for movie recommendation , 2006, Multimedia Tools and Applications.

[27]  Masataka Goto,et al.  An Efficient Hybrid Music Recommender System Using an Incrementally Trainable Probabilistic Generative Model , 2008, IEEE Transactions on Audio, Speech, and Language Processing.

[28]  Thomas Hofmann,et al.  Latent Class Models for Collaborative Filtering , 1999, IJCAI.

[29]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[30]  Thomas Hofmann,et al.  Latent semantic models for collaborative filtering , 2004, TOIS.

[31]  Svetha Venkatesh,et al.  Ordinal Boltzmann Machines for Collaborative Filtering , 2009, UAI.

[32]  Thomas Hofmann,et al.  Learning What People (Don't) Want , 2001, ECML.

[33]  Chris H. Q. Ding,et al.  Collaborative Filtering: Weighted Nonnegative Matrix Factorization Incorporating User and Item Graphs , 2010, SDM.

[34]  Byeong Man Kim,et al.  Clustering approach for hybrid recommender system , 2003, Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003).

[35]  Pedro M. Domingos,et al.  On the Optimality of the Simple Bayesian Classifier under Zero-One Loss , 1997, Machine Learning.

[36]  Raymond J. Mooney,et al.  Content-boosted collaborative filtering for improved recommendations , 2002, AAAI/IAAI.

[37]  Benjamin M. Marlin,et al.  Modeling User Rating Profiles For Collaborative Filtering , 2003, NIPS.

[38]  Nathaniel Good,et al.  Naïve filterbots for robust cold-start recommendations , 2006, KDD '06.

[39]  Benjamin M. Marlin,et al.  Collaborative Filtering: A Machine Learning Perspective , 2004 .

[40]  David M. Pennock,et al.  Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments , 2001, UAI.

[41]  G. W. Cran,et al.  Estimation of the constant term when using ridge regression , 1985 .

[42]  Michael H. Pryor,et al.  The Effects of Singular Value Decomposition on Collaborative Filtering , 1998 .

[43]  David M. Pennock,et al.  Generative Models for Cold-Start Recommendations , 2001 .

[44]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[45]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[46]  Yew Jin Lim Variational Bayesian Approach to Movie Rating Prediction , 2007 .

[47]  Luis M. de Campos,et al.  Managing uncertainty in group recommending processes , 2009, User Modeling and User-Adapted Interaction.

[48]  Samuel Kaski,et al.  Two-Way Latent Grouping Model for User Preference Prediction , 2005, UAI.

[49]  Michael J. Pazzani,et al.  Learning Collaborative Information Filters , 1998, ICML.

[50]  Alfred Kobsa,et al.  The Adaptive Web, Methods and Strategies of Web Personalization , 2007, The Adaptive Web.

[51]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[52]  Michel Verleysen,et al.  Collaborative Filtering with interlaced Generalized Linear Models , 2008, ESANN.

[53]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[54]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[55]  S. Floyd,et al.  Adaptive Web , 1997 .

[56]  Yoshua Bengio,et al.  Inference for the Generalization Error , 1999, Machine Learning.

[57]  Alfred Kobsa User Modeling and User-Adapted Interaction , 2005, User Modeling and User-Adapted Interaction.

[58]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[59]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[60]  John Riedl,et al.  Application of Dimensionality Reduction in Recommender System - A Case Study , 2000 .

[61]  Kenneth Y. Goldberg,et al.  Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.