Solidification enhancement of phase change materials using fins and nanoparticles in a triplex-tube thermal energy storage unit: Recent advances and development

[1]  Yu Wang,et al.  Experimental investigation of the effect of rotation rate and current speed on the dynamic response of riserless rotating drill string , 2023, Ocean Engineering.

[2]  A. Dmitruk,et al.  Performance of zeolite- and PCM-based cascade hybrid heat accumulator with cast thermal conductivity enhancers , 2023, Sustainable Energy Technologies and Assessments.

[3]  M. Sheremet,et al.  Numerical investigation of magneto-thermal-convection impact on phase change phenomenon of Nano-PCM within a hexagonal shaped thermal energy storage , 2023, Applied Thermal Engineering.

[4]  L. Cabeza,et al.  Thermo-economic optimization of a multi-source (air/sun/ground) residential heat pump with a water/PCM thermal storage , 2023, Applied Energy.

[5]  Hakeem A. Othman,et al.  Amelioration of thermal storage system with inclusion of nanomaterial within solidification , 2023, Journal of Energy Storage.

[6]  H. Mohammed,et al.  Heat transfer enhancement and free convection assessment in a double-tube latent heat storage unit equipped with optimally spaced circular fins: Evaluation of the melting process , 2023, Frontiers in Energy Research.

[7]  A. Dhoble,et al.  A review of thermal management methods for electric vehicle batteries based on heat pipes and PCM , 2023, Journal of the Brazilian Society of Mechanical Sciences and Engineering.

[8]  Muhamad Izzuddin Ismail,et al.  Enhancing the Air Conditioning Unit Performance via Energy Storage of Different Inorganic Phase Change Materials with Hybrid Nanoparticles , 2023, JOM.

[9]  D. Groulx,et al.  Solidification of phase change materials in horizontal annuli , 2023, Journal of Energy Storage.

[10]  Jason C. Quinn,et al.  Viability of waste heat capture, storage, and transportation for decentralized flowback and produced water treatment , 2023, Applied Energy.

[11]  Haodong Jia,et al.  Highly thermally conductive composite phase-change materials doped with two-dimensional heterogeneous nanohybrids for photo/electro-thermal energy storage , 2023, Journal of Energy Storage.

[12]  C. Meena,et al.  Recent Advancements in Augmentation of Solar Water Heaters Using Nanocomposites with PCM: Past, Present, and Future , 2022, Buildings.

[13]  Liwu Fan,et al.  A novel cascade latent heat thermal energy storage system consisting of erythritol and paraffin wax for deep recovery of medium-temperature industrial waste heat , 2022, Energy.

[14]  M. Sheremet,et al.  Charging process of a partially heated trapezoidal thermal energy storage filled by nano-enhanced PCM using controlable uniform magnetic field , 2022, International Communications in Heat and Mass Transfer.

[15]  D. Heim,et al.  Thermal model of heat transfer in a PCM multilayer construction using Moving Mushy Volume Approach – verification, validation and sensitivity analysis , 2022, Journal of Building Performance Simulation.

[16]  Ali J. Chamkha,et al.  Phase change heat transfer and energy storage in a wavy-tube thermal storage unit filled with a nano-enhanced phase change material and metal foams , 2022, Journal of Energy Storage.

[17]  M. Cheralathan,et al.  Charging and discharging processes of low capacity nano-PCM based cool thermal energy storage system: An experimental study , 2022, Energy.

[18]  H. Mohammed,et al.  CFD analysis on optimizing the annular fin parameters toward an improved storage response in a triple‐tube containment system , 2022, Energy Science & Engineering.

[19]  H. Mohammed,et al.  Thermal Management of the Melting Process in a Latent Heat Triplex Tube Storage System Using Different Configurations of Frustum Tubes , 2022, Journal of Nanomaterials.

[20]  M. Ferry,et al.  Phase Transformations in an Ultralight BCC Mg Alloy during Anisothermal Aging , 2022, Acta Materialia.

[21]  M. Saffari,et al.  Improving the building energy flexibility using PCM-enhanced envelopes , 2022, Applied Thermal Engineering.

[22]  H. Mohammed,et al.  Solidification of a nano-enhanced phase change material (NePCM) in a double elliptical latent heat storage unit with wavy inner tubes , 2022, Solar Energy.

[23]  O. Younis,et al.  Review of Heat Transfer Analysis in Different Cavity Geometries with and without Nanofluids , 2022, Nanomaterials.

[24]  H. Ali,et al.  Discharge Enhancement in a Triple-Pipe Heat Exchanger Filled with Phase Change Material , 2022, Nanomaterials.

[25]  S. Tao,et al.  Heat Transfer Performance and Structural Optimization of a Novel Micro-channel Heat Sink , 2022, Chinese Journal of Mechanical Engineering.

[26]  H. Mohammed Discharge improvement of a phase change material‐air‐based thermal energy storage unit for space heating applications using metal foams in the air sides , 2022, Heat Transfer.

[27]  Z. Said,et al.  Influence of longitudinal fin arrangement on the melting and solidification inside the triplex tube latent heat thermal storage system , 2022, Journal of Energy Storage.

[28]  Adnan I. Khdair,et al.  Developing building enhanced with PCM to reduce energy consumption , 2021, Journal of Building Engineering.

[29]  M. Ghalambaz,et al.  Optimum design of a double elliptical latent heat energy storage system during the melting process , 2021, Journal of Energy Storage.

[30]  H. Masoumi,et al.  Experimental and numerical investigation of melting/solidification of nano-enhanced phase change materials in shell & tube thermal energy storage systems , 2021, Journal of Energy Storage.

[31]  H. Mohammed,et al.  Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins , 2021, Energies.

[32]  Ceylin Şirin,et al.  Experimental investigation of a parabolic greenhouse dryer improved with copper oxide nano‐enhanced latent heat thermal energy storage unit , 2021, International Journal of Energy Research.

[33]  Balamurugan A. Gurunathan,et al.  State of art review on the solidification and melting characteristics of phase change material in triplex-tube thermal energy storage , 2021 .

[34]  Chuanguo Ma,et al.  Significantly enhancing fracture toughness of epoxy composite with promising γ-FeOOH@Fe2O3 hybrid nanoparticles by magnetic field assistance , 2021, Nano Materials Science.

[35]  Yongping Huang,et al.  Charging and discharging enhancement of a vertical latent heat storage unit by fractal tree-shaped fins , 2021 .

[36]  A. Ranjbar,et al.  Toward a highly efficient photovoltaic thermal module: Energy and exergy analysis , 2021 .

[37]  S. Yao,et al.  Study on solidification performance of PCM by longitudinal triangular fins in a triplex-tube thermal energy storage system , 2021, Energy.

[38]  M. Shafii,et al.  Solidification enhancement in triplex thermal energy storage system via triplets fins configuration and hybrid nanoparticles , 2021 .

[39]  D. Ganji,et al.  Effect of two different fins (longitudinal-tree like) and hybrid nano-particles (MoS2-TiO2) on solidification process in triplex latent heat thermal energy storage system , 2020 .

[40]  N. Radacsi,et al.  Hierarchically electrospun nanofibers and their applications: A review , 2020 .

[41]  T. Ma,et al.  Optimization and performance investigation of the solidification behavior of nano-enhanced phase change materials in triplex-tube and shell-and-tube energy storage units , 2020 .

[42]  P. Talebizadehsardari,et al.  A numerical study of a PCM-based passive solar chimney with a finned absorber , 2020 .

[43]  Xiangwei Lin,et al.  A review on the effect of external fields on solidification, melting and heat transfer enhancement of phase change materials , 2020 .

[44]  F. Selimefendigil,et al.  Energy storage analysis for discharging of nanoparticle enhanced phase change material within a triplex-tube thermal storage , 2020 .

[45]  K. Sztekler,et al.  The Impact of Heat Exchangers’ Constructions on the Melting and Solidification Time of Phase Change Materials , 2020, Energies.

[46]  Chuankun Jia,et al.  Bio-inspired synthesis of nanomaterials and smart structures for electrochemical energy storage and conversion , 2020 .

[47]  N. Nam,et al.  Modeling for solidification of water within a triplex-tube tank using nanoparticles , 2020 .

[48]  N. Zhang,et al.  Thermal performance of triplex-tube latent heat storage exchanger: simultaneous heat storage and hot water supply via condensation heat recovery , 2020 .

[49]  Q. Bach,et al.  Solidification of PCM within a tank with longitudinal-Y shape fins and CuO nanoparticle , 2020 .

[50]  M. Sheikholeslami,et al.  Solidification within a wavy triplex-tube heat storage unit utilizing numerical simulation considering Al2O3 nanoparticles , 2020 .

[51]  D. Ganji,et al.  Effect of internal fins along with Hybrid Nano-Particles on solid process in star shape triplex Latent Heat Thermal Energy Storage System by numerical simulation , 2020 .

[52]  Yanshun Yu,et al.  Solidification performance of heat exchanger with tree-shaped fins , 2020 .

[53]  M. Tohidi,et al.  Solidification expedition of Phase Change Material in a triplex-tube storage unit via novel fins and SWCNT nanoparticles , 2020 .

[54]  A. Shahsavar,et al.  Performance evaluation of melting/solidification mechanism in a variable wave-length wavy channel double-tube latent heat storage system , 2020 .

[55]  Yongping Chen,et al.  Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins , 2020 .

[56]  D. Ganji,et al.  Solidification acceleration in a triplex-tube latent heat thermal energy storage system using V-shaped fin and nano-enhanced phase change material , 2019 .

[57]  T. Nguyen-Thoi,et al.  Simulation of triplex-tube heat storage including nanoparticles, solidification process , 2019 .

[58]  M. Gillott,et al.  Composite metal foam/PCM energy store design for dwelling space air heating , 2019 .

[59]  I. Tlili,et al.  Investigation of nanofluid conduction heat transfer within a triplex tube considering solidification , 2019, Journal of Molecular Liquids.

[60]  Yanzhong Li,et al.  Optimization of ground heat exchanger using microencapsulated phase change material slurry based on tree-shaped structure , 2019, Applied Energy.

[61]  K. Sopian,et al.  A review of solar air flat plate collector for drying application , 2019, Renewable and Sustainable Energy Reviews.

[62]  Emmanuel C. Nsofor,et al.  Simultaneous energy storage and recovery in the triplex-tube heat exchanger with PCM, copper fins and Al2O3 nanoparticles , 2019, Energy Conversion and Management.

[63]  A. R. Darzi,et al.  Melting and solidification of PCM embedded in porous metal foam in horizontal multi-tube heat storage system , 2018, Energy Conversion and Management.

[64]  Ali Jaber Abdulhamed,et al.  Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications , 2018, Renewable and Sustainable Energy Reviews.

[65]  H. E. Qarnia,et al.  Thermal performance analysis of combined solar collector with triple concentric-tube latent heat storage systems , 2018, Energy and Buildings.

[66]  A. Ranjbar,et al.  Investigation of PCM charging for the energy saving of domestic hot water system , 2018, Applied Thermal Engineering.

[67]  Emmanuel C. Nsofor,et al.  Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins , 2018 .

[68]  G. Fang,et al.  Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage , 2018 .

[69]  I. Sârbu,et al.  A Comprehensive Review of Thermal Energy Storage , 2018 .

[70]  Michael E. Cholette,et al.  Multi-layer PCM solidification in a finned triplex tube considering natural convection , 2017 .

[71]  F. Bruno,et al.  Numerical investigation of PCM in vertical triplex tube thermal energy storage system for CSP applications , 2017 .

[72]  G. Fang,et al.  Thermal energy storage materials and systems for solar energy applications , 2017 .

[73]  R. Bahrampoury,et al.  Numerical study on geometrical specifications and operational parameters of multi-tube heat storage systems , 2016 .

[74]  Daniel Lager,et al.  Experimental characterization and simulation of a fin-tube latent heat storage using high density polyethylene as PCM , 2016 .

[75]  Emmanuel C. Nsofor,et al.  Solidification of a PCM with nanoparticles in triplex-tube thermal energy storage system , 2016 .

[76]  A. Oubarra,et al.  Location and Thickness Effect of Two Phase Change Materials Between Layers of Roof on Energy Consumption for Air-Conditioned Room , 2016 .

[77]  M. Romero,et al.  Numerical analysis of charging and discharging performance of a thermal energy storage system with encapsulated phase change material , 2014 .

[78]  Saeed Kamali,et al.  Review of free cooling system using phase change material for building , 2014 .

[79]  A. Sreekumar,et al.  Influence of nanomaterials on properties of latent heat solar thermal energy storage materials – A review , 2014 .

[80]  K. Sopian,et al.  Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins , 2013 .

[81]  Kamaruzzaman Sopian,et al.  Experimental study of PCM melting in triplex tube thermal energy storage for liquid desiccant air conditioning system , 2013 .

[82]  K. Sopian,et al.  Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers , 2013 .

[83]  Marc A. Rosen,et al.  Thermal performance of a multiple PCM thermal storage unit for free cooling , 2013 .

[84]  Pramod B. Salunkhe,et al.  A review on effect of phase change material encapsulation on the thermal performance of a system , 2012 .

[85]  Dan Zhou,et al.  Review on thermal energy storage with phase change materials (PCMs) in building applications , 2012 .

[86]  C. Yildiz,et al.  The drying kinetics of seeded grape in solar dryer with PCM-based solar integrated collector , 2011 .

[87]  K. Sopian,et al.  Review of solar air collectors with thermal storage units , 2011 .

[88]  Francis Agyenim,et al.  A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) , 2010 .

[89]  Long Jian-you,et al.  Numerical and experimental investigation for heat transfer in triplex concentric tube with phase change material for thermal energy storage , 2008 .

[90]  K. Lafdi,et al.  Effect of multiple phase change materials (PCMs) slab configurations on thermal energy storage , 2006 .

[91]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[92]  Z. Chen,et al.  Design and thermal performance of thermal diode based on the asymmetric flow resistance in vapor channel , 2023, International Journal of Thermal Sciences.

[93]  Mohammad Hassan Shahavi,et al.  Performance enhancement of nano PCM solidification in a hexagonal storage unit with innovative fin shapes dealing with time-dependent boundary conditions , 2022, Energy Reports.

[94]  M. K. Rathod,et al.  Heat transfer augmentation of triplex type latent heat thermal energy storage using combined eccentricity and longitudinal fin , 2022, Journal of Energy Storage.

[95]  O. Younis,et al.  Review of solidification of phase change materials dispersed with nanoparticles in different containers , 2022, Journal of Energy Storage.

[96]  N. Gokon,et al.  Numerical analysis on solidification process of PCM in triplex-tube thermal energy storage system , 2020 .

[97]  S. McCormack,et al.  Phase Change Materials for Solar Energy Applications , 2019 .

[98]  M. A. Mussa,et al.  Experimental and numerical study of solidifying phase-change material in a triplex-tube heat exchanger with longitudinal/triangular fins , 2018 .

[99]  R. Bahrampoury,et al.  Phase change in multi-tube heat exchangers , 2016 .

[100]  Amélie Danlos,et al.  Some Efficient Solutions to Recover Low and Medium Waste Heat: Competitiveness of the Thermoacoustic Technology , 2014 .

[101]  Kihyung Lee,et al.  Improved heat storage rate for an automobile coolant waste heat recovery system using phase-change material in a fin–tube heat exchanger , 2014 .

[102]  Jungki Seo,et al.  Application of PCM thermal energy storage system to reduce building energy consumption , 2012, Journal of Thermal Analysis and Calorimetry.

[103]  R. Velraj,et al.  Effect of double layer phase change material in building roof for year round thermal management , 2008 .