On exterior differential systems involving differentials of Hölder functions

Abstract. We study the validity of an extension of Frobenius theorem on integral manifolds for some classes of Pfaff-type systems of partial differential equations involving multidimensional “rough” signals, i.e. “differentials” of given Hölder continuous functions interpreted in a suitable way, similarly to Young Differential Equations in Rough Paths theory. This can be seen as a tool to study solvability of exterior differential systems involving rough differential forms, i.e. the forms involving weak (distributional) derivatives of highly irregular (e.g. Hölder continuous) functions; the solutions (integral manifolds) being also some very weakly regular geometric structures.

[1]  Dario Trevisan,et al.  A rough calculus approach to level sets in the Heisenberg group , 2018, J. Lond. Math. Soc..

[2]  A. Montanari,et al.  A Frobenius-type theorem for singular Lipschitz distributions , 2011, 1110.4519.

[3]  Commutators of flow maps of nonsmooth vector fields , 2007 .

[4]  Nicolas Victoir,et al.  Multidimensional Stochastic Processes as Rough Paths: Variation and Hölder spaces on free groups , 2010 .

[5]  Robert Young,et al.  Constructing Hölder maps to Carnot groups , 2018, 1810.02700.

[6]  N. Gusev,et al.  Steady Nearly Incompressible Vector Fields in Two-Dimension: Chain Rule and Renormalization , 2016 .

[7]  Roger Züst Some Results on Maps That Factor through a Tree , 2014 .

[8]  H. Brezis,et al.  The Jacobian determinant revisited , 2011 .

[9]  S. Bianchini,et al.  A uniqueness result for the continuity equation in two dimensions , 2014 .

[10]  S. Simic Lipschitz distributions and Anosov flows , 1996 .

[11]  Integration of Hölder forms and currents in snowflake spaces , 2008 .

[12]  Martin Hairer,et al.  A Course on Rough Paths , 2020, Universitext.

[13]  C. Freytag Consistency Problems For Heath Jarrow Morton Interest Rate Models , 2016 .

[14]  Towards Geometric Integration of Rough Differential Forms , 2020, 2001.06446.

[15]  Massimiliano Gubinelli Controlling rough paths , 2003 .

[16]  D. Feyel,et al.  CURVILINEAR INTEGRALS ALONG ENRICHED PATHS , 2006 .

[17]  S. Luzzatto,et al.  Integrability of continuous bundles , 2016, Journal für die reine und angewandte Mathematik (Crelles Journal).

[18]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[19]  L. C. Young,et al.  An inequality of the Hölder type, connected with Stieltjes integration , 1936 .

[20]  P. Pansu,et al.  Métriques de Carnot-Carthéodory et quasiisométries des espaces symétriques de rang un , 1989 .