Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition

Forbidden characterizations may sometimes be the most natural way to describe families of graphs, and yet these characterizations are usually very hard to exploit for enumerative purposes. By building on the work of Gioan and Paul (2012) and Chauve et al. (2014), we show a methodology by which we constrain a split-decomposition tree to avoid certain patterns, thereby avoiding the corresponding induced subgraphs in the original graph. We thus provide the grammars and full enumeration for a wide set of graph classes: ptolemaic, block, and variants of cactus graphs (2,3-cacti, 3-cacti and 4-cacti). In certain cases, no enumeration was known (ptolemaic, 4-cacti); in other cases, although the enumerations were known, an abundant potential is unlocked by the grammars we provide (in terms of asymptotic analysis, random generation, and parameter analyses, etc.). We believe this methodology here shows its potential; the natural next step to develop its reach would be to study split-decomposition trees which contain certain prime nodes. This will be the object of future work.

[1]  Manuel Bodirsky,et al.  Boltzmann Samplers, Pólya Theory, and Cycle Pointing , 2010, SIAM J. Comput..

[2]  Ira M. Gessel,et al.  Enumeration of Bipartite Graphs and Bipartite Blocks , 2013, Electron. J. Comb..

[3]  Jeremy P. Spinrad,et al.  On graphs without a C4 or a diamond , 2011, Discret. Appl. Math..

[4]  Edward Howorka A characterization of ptolemaic graphs , 1981, J. Graph Theory.

[5]  Christophe Paul Split Decomposition via Graph-Labelled Trees , 2016, Encyclopedia of Algorithms.

[6]  Guy Louchard,et al.  Boltzmann Samplers for the Random Generation of Combinatorial Structures , 2004, Combinatorics, Probability and Computing.

[7]  Emeric Gioan,et al.  Split decomposition and graph-labelled trees: characterizations and fully-dynamic algorithms for totally decomposable graphs , 2008, Discret. Appl. Math..

[8]  Cédric Chauve,et al.  An Exact Enumeration of Distance-Hereditary Graphs , 2017, ANALCO.

[9]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[10]  Vlady Ravelomanana,et al.  D S ] 25 N ov 2 00 4 Forbidden Subgraphs in Connected Graphs 1 , 2008 .

[11]  Dieter Rautenbach,et al.  The domatic number of block-cactus graphs , 1998, Discret. Math..

[12]  G. Pólya Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen , 1937 .

[13]  Nicholas C. Wormald,et al.  Enumeration of P4-Free Chordal Graphs , 2003, Graphs Comb..

[14]  Frank Harary,et al.  Graphical enumeration , 1973 .

[15]  Vlady Ravelomanana,et al.  Asymptotic enumeration of cographs , 2001, Electron. Notes Discret. Math..

[16]  Mihyun Kang,et al.  A Complete Grammar for Decomposing a Family of Graphs into 3-Connected Components , 2008, Electron. J. Comb..

[17]  Jérémie O. Lumbroso,et al.  Split-Decomposition Trees with Prime Nodes: Enumeration and Random Generation of Cactus Graphs , 2017, ANALCO.

[18]  Bijan Taeri,et al.  A characterization of block graphs , 2010, Discret. Appl. Math..

[19]  Mireille Bousquet-Mélou,et al.  Asymptotic Properties of Some Minor-Closed Classes of Graphs , 2013, Combinatorics, Probability and Computing.

[20]  Ryuhei Uehara,et al.  Laminar structure of ptolemaic graphs with applications , 2009, Discret. Appl. Math..

[21]  Shin-Ichi Nakano,et al.  A New Approach to Graph Recognition and Applications to Distance-Hereditary Graphs , 2007, Journal of Computer Science and Technology.

[22]  Philip J. Hanlon,et al.  The enumeration of bipartite graphs , 1979, Discret. Math..

[23]  Alexander Iriza Enumeration and Random Generation of Unlabeled Classes of Graphs: A Practical Study of Cycle Pointing and the Dissymmetry Theorem , 2015, ArXiv.

[24]  C. H,et al.  Handbook of enumerative combinatorics , 2022 .

[25]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[26]  W. Cunningham Decomposition of Directed Graphs , 1982 .

[27]  Gilbert Labelle,et al.  Enumeration of m-Ary Cacti , 1998, Adv. Appl. Math..

[28]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[29]  Donald B. Johnson,et al.  Finding k-th Paths and p-Centers by Generating and Searching Good Data Structures , 1983, J. Algorithms.

[30]  R. Otter The Number of Trees , 1948 .

[31]  G. Chartrand,et al.  A Characterization of Certain Ptolemaic Graphs , 1965, Canadian Journal of Mathematics.

[32]  Philippe Flajolet,et al.  A Calculus for the Random Generation of Labelled Combinatorial Structures , 1994, Theor. Comput. Sci..

[33]  B. Bollobás,et al.  Combinatorics, Probability and Computing , 2006 .

[34]  P. Flajolet,et al.  Boltzmann Sampling of Unlabelled Structures , 2006 .

[35]  F Harary,et al.  On the Number of Husimi Trees: I. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[36]  G. Pólya,et al.  Combinatorial Enumeration Of Groups, Graphs, And Chemical Compounds , 1988 .