Correlated ab initio quantum chemical calculations of di‐ and trisaccharide conformations

High level correlated quantum chemical calculations, using MP2 and local MP2 theory, have been performed for conformations of the disaccharide, β‐maltose, and the trisaccharide, 3,6‐di‐O‐(α‐D‐mannopyranosyl)‐α‐D‐mannopyranose. For β‐maltose, MP2 and local MP2 calculations using the 6‐311++G** basis set are in good agreement, predicting a global minimum gas‐phase conformation with a counterclockwise hydrogen bond network and the experimentally‐observed intersaccharide hydrogen bonding arrangement. For conformations of 3,6‐di‐O‐(α‐D‐mannopyranosyl)‐α‐D‐mannopyranose, MP2/6‐311++G**, and local MP2/6‐311++G** calculations do not provide a consensus prediction of relative energetics, with the MP2 method finding large differences in stability between extended and folded trisaccharide conformations. Local MP2 calculations, less susceptible to intramolecular basis set superposition errors, predict a narrower range of trisaccharide energetics, in line with estimates from Hartree–Fock theory and B3LYP and BP86 density functionals. All levels of theory predict compact, highly hydrogen‐bonded conformations as lowest in energy on the in vacuo potential energy surface of the trisaccharide. These high level, correlated local MP2/6‐311++G** calculations of di‐ and trisaccharide energetics constitute potential reference data in the development and testing of improved empirical and semiempirical potentials for modeling of carbohydrates in the condensed phase. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007

[1]  Frank A. Momany,et al.  DFT study of α- and β-d-mannopyranose at the B3LYP/6-311++G** level , 2005 .

[2]  Krisztina Éliás,et al.  Relative stability of 1C4 and 4C1 chair forms of β-d-glucose: a density functional study , 1996 .

[3]  J. Brady,et al.  The role of hydrogen bonding in carbohydrates: molecular dynamics simulations of maltose in aqueous solution , 1993 .

[4]  Angela K Wilson,et al.  The behavior of density functionals with respect to basis set. I. The correlation consistent basis sets. , 2004, The Journal of chemical physics.

[5]  J. Brisson,et al.  Solution conformation of alpha D(1-3)- and alpha D(1-6)-linked oligomannosides using proton nuclear magnetic resonance. , 1983, Biochemistry.

[6]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .

[7]  Peter Pulay,et al.  Efficient elimination of basis set superposition errors by the local correlation method: Accurate ab initio studies of the water dimer , 1993 .

[8]  P. Kollman,et al.  Advancing beyond the atom‐centered model in additive and nonadditive molecular mechanics , 1997 .

[9]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[10]  J. Perdew,et al.  Test of a nonempirical density functional: short-range part of the van der Waals interaction in rare-gas dimers. , 2005, The Journal of chemical physics.

[11]  Manuel Calderón Sánchez,et al.  Theoretical study of the relative stability of rotational conformers of alpha and beta-D-glucopyranose in gas phase and aqueous solution. , 2004, Journal of the American Chemical Society.

[12]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[13]  G. Csonka Proper basis set for quantum mechanical studies of potential energy surfaces of carbohydrates , 2002 .

[14]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[15]  J. Brickmann,et al.  Theoretical investigations on 1,2‐ethanediol: The problem of intramolecular hydrogen bonds , 1996 .

[16]  Timothy J. Giese,et al.  Improvement of semiempirical response properties with charge-dependent response density. , 2005, The Journal of chemical physics.

[17]  G. Chang,et al.  Macromodel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics , 1990 .

[18]  Donald G. Truhlar,et al.  Factors controlling relative stability of anomers and hydroxymethyl conformers of glucopyranose , 1998, J. Comput. Chem..

[19]  Hong Wang,et al.  Towards a quantum mechanical force field for carbohydrates: a reparametrized semi-empirical MO approach. , 2004 .

[20]  Alexander D. MacKerell,et al.  An ab Initio Quantum Mechanical Study of Hydrogen-Bonded Complexes of Biological Interest , 2002 .

[21]  Peter Pulay,et al.  CAN (SEMI) LOCAL DENSITY FUNCTIONAL THEORY ACCOUNT FOR THE LONDON DISPERSION FORCES , 1994 .

[22]  Steven J. Stuart,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994 .

[23]  A. Imberty,et al.  Relaxed potential energy surfaces of maltose , 1989 .

[24]  Frank A. Momany,et al.  Computational studies on carbohydrates: I. Density functional ab initio geometry optimization on maltose conformations , 2000 .

[25]  A. French,et al.  Exploration of disaccharide conformations by molecular mechanics , 1993 .

[26]  Nobuaki Miura,et al.  A theoretical study of α- and β-d-glucopyranose conformations by the density functional theory , 2006 .

[27]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[28]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .

[29]  N. Sharon,et al.  Lectins: Carbohydrate-Specific Proteins That Mediate Cellular Recognition. , 1998, Chemical reviews.

[30]  Pavel Hobza,et al.  Accurate interaction energies of hydrogen-bonded nucleic acid base pairs. , 2004, Journal of the American Chemical Society.

[31]  William L. Jorgensen,et al.  Ab Initio Study Of Hydrogen-Bonded Complexes Of Small Organic Molecules With Water , 1998 .

[32]  Younghi Kwon,et al.  Theoretical Study on Salicylaldehyde and 2-Mercaptobenzaldehyde: Intramolecular Hydrogen Bonding , 1998 .

[33]  Daniel Herschlag,et al.  RNA simulations: probing hairpin unfolding and the dynamics of a GNRA tetraloop. , 2002, Journal of molecular biology.

[34]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[35]  G. P. Johnson,et al.  Constructing and evaluating energy surfaces of crystalline disaccharides. , 2000, Journal of molecular graphics & modelling.

[36]  G. P. Johnson,et al.  Quantum mechanics studies of the intrinsic conformation of trehalose , 2002 .

[37]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[38]  Jenn-Huei Lii,et al.  Importance of selecting proper basis set in quantum mechanical studies of potential energy surfaces of carbohydrates , 1999 .

[39]  Darrin M York,et al.  A Semiempirical Quantum Model for Hydrogen-Bonded Nucleic Acid Base Pairs. , 2005, Journal of chemical theory and computation.

[40]  Peter Pulay,et al.  Localizability of dynamic electron correlation , 1983 .

[41]  Petros Koumoutsakos,et al.  Dispersion corrections to density functionals for water aromatic interactions. , 2004, The Journal of chemical physics.

[42]  Donald G. Truhlar,et al.  Relative stability of alternative chair forms and hydroxymethyl conformations of β-d-glucopyranose , 1995 .

[43]  J. Naismith,et al.  Structural Basis of Trimannoside Recognition by Concanavalin A (*) , 1996, The Journal of Biological Chemistry.

[44]  Charles L. Brooks,et al.  CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations , 2004, J. Comput. Chem..

[45]  Harry A. Stern,et al.  Fluctuating Charge, Polarizable Dipole, and Combined Models: Parameterization from ab Initio Quantum Chemistry , 1999 .