Disjunctive Aspects in Generalized Semi-infinite Programming

In this thesis the close relationship between generalized semi-infinite problems (GSIP) and disjunctive problems (DP) is considered. We start with the description of some optimization problems from timber industry and illustrate how GSIPs and DPs arise naturally in that field. Three different applications are reviewed. Next, theory and solution methods for both types of problems are examined. We describe a new possibility to model disjunctive optimization problems as generalized semi-infinite programs. Applying existing lower level reformulations for the obtained semi-infinite program we derive conjunctive nonlinear problems without any logical expressions, which can be locally solved by standard nonlinear solvers. In addition to this local solution procedure we propose a new branch-and-bound framework for global optimization of disjunctive programs. In contrast to the widely used reformulation as a mixed-integer program, we compute the lower bounds and evaluate the logical expression in one step. Thus, we reduce the size of the problem and work exclusively with continuous variables, which is computationally advantageous. In contrast to existing methods in disjunctive programming, none of our approaches expects any special formulation of the underlying logical expression. Where applicable, under slightly stronger assumptions, even the use of negations and implications is allowed. Our preliminary numerical results show that both procedures, the reformulation technique as well as the branch-and-bound algorithm, are reasonable methods to solve disjunctive optimization problems locally and globally, respectively. In the last part of this thesis we propose a new branch-and-bound algorithm for global minimization of box-constrained generalized semi-infinite programs. It treats the inherent disjunctive structure of these problems by tailored lower bounding procedures. Three different possibilities are examined. The first one relies on standard lower bounding procedures from conjunctive global optimization. The second and the third alternative are based on linearization techniques by which we derive linear disjunctive relaxations of the considered sub-problems. Solving these by either mixed-integer linear reformulations or, alternatively, by disjunctive linear programming techniques yields two additional possibilities. Our numerical results on standard test problems with these three lower bounding procedures show the merits of our approach.

[1]  W. Achtziger On simultaneous optimization of truss geometry and topology , 2007 .

[2]  R. Steele Optimization , 2005 .

[3]  Richard L. Church,et al.  Concurrent optimization of harvesting and road network layouts under steep terrain , 2012, Ann. Oper. Res..

[4]  Arkadi Nemirovski,et al.  Robust Truss Topology Design via Semidefinite Programming , 1997, SIAM J. Optim..

[5]  T. Westerlund,et al.  An extended cutting plane method for solving convex MINLP problems , 1995 .

[6]  Marco A. López,et al.  Semi-infinite programming , 2007, Eur. J. Oper. Res..

[7]  R. Raman,et al.  Modelling and computational techniques for logic based integer programming , 1994 .

[8]  Edward M. B. Smith,et al.  A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs , 1999 .

[9]  Eckart Baumann Optimal centered forms , 1988 .

[10]  Ignacio E. Grossmann,et al.  A rigorous disjunctive optimization model for simultaneous flowsheet optimization and heat integration , 1998 .

[11]  Ignacio E. Grossmann,et al.  A cutting plane method for solving linear generalized disjunctive programming problems , 2003 .

[12]  Jonathan F. Bard,et al.  Practical Bilevel Optimization , 1998 .

[13]  C. Adjiman,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results , 1998 .

[14]  Sven Leyffer,et al.  Solving mixed integer nonlinear programs by outer approximation , 1994, Math. Program..

[15]  Juan P. Ruiz,et al.  Generalized Disjunctive Programming: A Framework for Formulation and Alternative Algorithms for MINLP Optimization , 2012 .

[16]  Ignacio E. Grossmann,et al.  A global optimization algorithm for nonconvex generalized disjunctive programming and applications to process systems , 2001 .

[17]  Oliver Stein,et al.  A lifting method for generalized semi-infinite programs based on lower level Wolfe duality , 2013, Comput. Optim. Appl..

[18]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1987, Math. Program..

[19]  R. J. Dakin,et al.  A tree-search algorithm for mixed integer programming problems , 1965, Comput. J..

[20]  Rembert Reemtsen,et al.  Numerical Methods for Semi-Infinite Programming: A Survey , 1998 .

[21]  Oliver Stein,et al.  Solving Semi-Infinite Optimization Problems with Interior Point Techniques , 2003, SIAM J. Control. Optim..

[22]  A. Weintraub,et al.  Forest management challenges for operational researchers , 1998 .

[23]  M. Kurttila The spatial structure of forests in the optimization calculations of forest planning — a landscape ecological perspective , 2001 .

[24]  Oliver Stein,et al.  Solving Disjunctive Optimization Problems by Generalized Semi-infinite Optimization Techniques , 2016, J. Optim. Theory Appl..

[25]  Edward M. B. Smith,et al.  Global optimisation of nonconvex MINLPs , 1997 .

[26]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[27]  Mirjam Dür A class of problems where dual bounds beat underestimation bounds , 2002, J. Glob. Optim..

[28]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[29]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[30]  Ignacio E. Grossmann,et al.  Generalized Disjunctive Programming Model for the Optimal Synthesis of Thermally Linked Distillation Columns , 2001 .

[31]  Hubertus Th. Jongen,et al.  On the closure of the feasible set in generalized semi-infinite programming , 2007, Central Eur. J. Oper. Res..

[32]  Oliver Stein,et al.  Global optimization of disjunctive programs , 2017, J. Glob. Optim..

[33]  Alan T. Murray,et al.  Review of combinatorial problems induced by spatial forest harvesting planning , 2006, Discret. Appl. Math..

[34]  Georg J. Still,et al.  Generalized semi-infinite programming: numerical aspects , 2001 .

[35]  I. Grossmann,et al.  Optimal Design of Complex Distillation Columns Using Rigorous Tray-by-Tray Disjunctive Programming Models , 2000 .

[36]  Sanjay Mehrotra,et al.  A branch-and-cut method for 0-1 mixed convex programming , 1999, Math. Program..

[37]  Andrés Weintraub,et al.  Use of OR Systems in the Chilean Forest Industries , 1999, Interfaces.

[38]  Patricio Donoso,et al.  Internal supply chain management in the Chilean sawmill industry , 2007 .

[39]  C L Todoroki,et al.  Secondary log breakdown optimization with dynamic programming , 1997 .

[40]  Oliver Stein,et al.  Global optimization of generalized semi-infinite programs using disjunctive programming , 2019, J. Glob. Optim..

[41]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[42]  Jan Schwientek,et al.  A transformation-based discretization method for solving general semi-infinite optimization problems , 2020 .

[43]  Ignacio E. Grossmann,et al.  Review of Mixed‐Integer Nonlinear and Generalized Disjunctive Programming Methods , 2014 .

[44]  Mirjam Dür Dual bounding procedures lead to convergent Branch–and–Bound algorithms , 2001, Math. Program..

[45]  I. Grossmann Review of Nonlinear Mixed-Integer and Disjunctive Programming Techniques , 2002 .

[46]  Richard C. Larson,et al.  Model Building in Mathematical Programming , 1979 .

[47]  I. Grossmann,et al.  Disjunctive Programming Models for the Optimal Design of Distillation Columns and Separation Sequences , 2000 .

[48]  Alfred Rinnhofer,et al.  Internal log scanning for optimizing breakdown , 2003 .

[49]  Ignacio E. Grossmann,et al.  Generalized Convex Disjunctive Programming: Nonlinear Convex Hull Relaxation , 2003, Comput. Optim. Appl..

[50]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[51]  Oliver Stein,et al.  Generalized semi-infinite programming: A tutorial , 2008 .

[52]  Mikael Rönnqvist,et al.  Combined primary and secondary log breakdown optimisation , 1999, J. Oper. Res. Soc..

[53]  Andres Weintraub,et al.  A Forest Management Planning Model Integrating Silvicultural and Transportation Activities , 1976 .

[54]  Rodrigo Pascual,et al.  Scheduling production for a sawmill: A robust optimization approach , 2014 .

[55]  J. E. Falk,et al.  Infinitely constrained optimization problems , 1976 .

[56]  Ignacio E. Grossmann,et al.  Disjunctive Programming Techniques for the Optimization of Process Systems with Discontinuous Investment Costs−Multiple Size Regions , 1996 .

[57]  Oliver Stein,et al.  Bi-Level Strategies in Semi-Infinite Programming , 2003 .

[58]  M. Teboulle,et al.  Asymptotic cones and functions in optimization and variational inequalities , 2002 .

[59]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[60]  Monique Guignard-Spielberg,et al.  A Problem of Forest Harvesting and Road Building Solved Through Model Strengthening and Lagrangean Relaxation , 2003, Oper. Res..

[61]  Oliver Stein,et al.  The adaptive convexification algorithm for semi-infinite programming with arbitrary index sets , 2012, Math. Program..

[62]  Hubertus Th. Jongen,et al.  Generalized semi-infinite optimization: A first order optimality condition and examples , 1998, Math. Program..

[63]  D. Azé,et al.  A survey on error bounds for lower semicontinuous functions , 2003 .

[64]  Hubertus Th. Jongen,et al.  Critical sets in parametric optimization , 1986, Math. Program..

[65]  Berç Rustem,et al.  A global optimization algorithm for generalized semi-infinite, continuous minimax with coupled constraints and bi-level problems , 2009, J. Glob. Optim..

[66]  P. Belotti Disjunctive Cuts for Nonconvex MINLP , 2012 .

[67]  Charles ReVelle,et al.  The grid packing problem : selecting a harvesting pattern in an area with forbidden regions , 1996 .

[68]  Ignacio E. Grossmann,et al.  Nonlinear disjunctive programming models for the synthesis of heat integrated distillation sequences , 1999 .

[69]  Oliver Stein,et al.  Feasible Method for Generalized Semi-Infinite Programming , 2010 .

[70]  A. Neumaier Interval methods for systems of equations , 1990 .

[71]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[72]  Rainer Hettich,et al.  Numerische Methoden der Approximation und semi-infiniten Optimierung , 1982 .

[73]  Ignacio E. Grossmann,et al.  A hierarchy of relaxations for linear generalized disjunctive programming , 2012, Eur. J. Oper. Res..

[74]  Paul I. Barton,et al.  Interval Methods for Semi-Infinite Programs , 2005, Comput. Optim. Appl..

[75]  Charles ReVelle,et al.  A Shortest Path Model for the Optimal Timing of Forest Harvest Decisions , 1996 .

[76]  Stefan Scholtes,et al.  Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity , 2000, Math. Oper. Res..

[77]  Alexander Mitsos,et al.  Global optimization of generalized semi-infinite programs via restriction of the right hand side , 2014, Journal of Global Optimization.

[78]  Nicholas Beaumont,et al.  An algorithm for disjunctive programs , 1990 .

[79]  Bernard G. Halterman,et al.  Integrating timber and wildlife management planning , 1973 .

[80]  Ignacio E. Grossmann,et al.  Global optimization of nonlinear generalized disjunctive programming with bilinear equality constraints: applications to process networks , 2003, Comput. Chem. Eng..

[81]  Ignacio E. Grossmann,et al.  LOGMIP: a disjunctive 0–1 nonlinear optimizer for process systems models , 1997 .

[82]  Jorge R. Vera,et al.  Application of Robust Optimization to the Sawmill Planning Problem , 2014, Ann. Oper. Res..

[83]  B. Faaland,et al.  Log Bucking and Lumber Manufacturing Using Dynamic Programming , 1984 .

[84]  Florian Jarre,et al.  Optimal Truss Design by Interior-Point Methods , 1998, SIAM J. Optim..

[85]  Ignacio E. Grossmann,et al.  Symbolic integration of logic in mixed-integer linear programming techniques for process synthesis , 1993 .

[86]  R. Raman,et al.  RELATION BETWEEN MILP MODELLING AND LOGICAL INFERENCE FOR CHEMICAL PROCESS SYNTHESIS , 1991 .

[87]  Brian Kent,et al.  Natural Resource Land Management Planning Using Large-Scale Linear Programs: The USDA Forest Service Experience with FORPLAN , 1991, Oper. Res..

[88]  Sebastián Ceria,et al.  Convex programming for disjunctive convex optimization , 1999, Math. Program..

[89]  Carlos Romero,et al.  Operations Research Models and the Management of Agricultural and Forestry Resources: A Review and Comparison , 2006, Interfaces.

[90]  Oliver Stein,et al.  The Adaptive Convexification Algorithm: A Feasible Point Method for Semi-Infinite Programming , 2007, SIAM J. Optim..

[91]  Jorge Vera,et al.  Scheduling production for a sawmill: A comparison of a mathematical model versus a heuristic , 2010, Comput. Ind. Eng..

[92]  Ja N M. P. Geerts,et al.  MATHEMATICAL SOLUTION FOR OPTIMISING THE SAWING PATTERN OF A LOG GIVEN ITS DIMENSIONS AND ITS DEFECT CORE , 1984 .

[93]  Hubertus Th. Jongen,et al.  General Semi-Infinite Programming: Symmetric Mangasarian-Fromovitz Constraint Qualification and the Closure of the Feasible Set , 2010, SIAM J. Optim..

[94]  Ignacio E. Grossmann,et al.  Global optimization of non-convex generalized disjunctive programs: a review on reformulations and relaxation techniques , 2017, J. Glob. Optim..

[95]  Georg Still,et al.  Generalized semi-infinite programming: Theory and methods , 1999, Eur. J. Oper. Res..

[96]  María Auxilio Osorio Lama,et al.  Mixed Logical-linear Programming , 1999, Discret. Appl. Math..

[97]  Ignacio E. Grossmann,et al.  A hierarchy of relaxations for nonlinear convex generalized disjunctive programming , 2012, Eur. J. Oper. Res..

[98]  Alan T. Murray,et al.  Measuring the efficacy of adjacency constraint structure in forest planning models , 1995 .

[99]  E. Balas Disjunctive programming and a hierarchy of relaxations for discrete optimization problems , 1985 .

[100]  I. Grossmann,et al.  Systematic modeling of discrete-continuous optimization models through generalized disjunctive programming , 2013 .

[101]  Harvey J. Greenberg,et al.  Automatic design of optimal structures , 1964 .

[102]  Egon Balas Disjunctive Programming , 2010, 50 Years of Integer Programming.

[103]  Egon Balas A note on duality in disjunctive programming , 1977 .

[104]  Egon Balas,et al.  Lift-and-project for Mixed 0-1 programming: recent progress , 2002, Discret. Appl. Math..

[105]  Francisco Facchinei,et al.  A smoothing method for mathematical programs with equilibrium constraints , 1999, Math. Program..

[106]  Paul I. Barton,et al.  Global solution of semi-infinite programs , 2004 .

[107]  Oliver Stein,et al.  How to solve a semi-infinite optimization problem , 2012, Eur. J. Oper. Res..

[108]  Deborah F. Cook,et al.  Genetic algorithm approach to a lumber cutting optimization problem , 1991 .

[109]  P. I. Barton,et al.  Global optimization algorithms for semi-infinite and generalized semi-infinite programs , 2008 .

[110]  Pedro M. Castro,et al.  Generalized Disjunctive Programming as a Systematic Modeling Framework to Derive Scheduling Formulations , 2012 .

[111]  Karl Nickel,et al.  Die zentrische Form in der Intervallarithmetik, ihre quadratische Konvergenz und ihre Inklusionsisotonie , 1982, Computing.

[112]  Mikael Rönnqvist,et al.  Optimization in forestry , 2003, Math. Program..

[113]  Egon Balas,et al.  programming: Properties of the convex hull of feasible points * , 1998 .

[114]  Hubertus Th. Jongen,et al.  Disjunctive Optimization: Critical Point Theory , 1997 .

[115]  M. Rönnqvist,et al.  Dynamic Control of Timber Production at a Sawmill with Log Sawing Optimization , 2002 .

[116]  Mikael Rönnqvist,et al.  Integrated defect detection and optimization for cross cutting of wooden boards , 1998, Eur. J. Oper. Res..

[117]  Daoud Aït-Kadi,et al.  Robust production planning in a manufacturing environment with random yield: A case in sawmill production planning , 2010, Eur. J. Oper. Res..

[118]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[119]  O. Knüppel,et al.  PROFIL/BIAS—A fast interval library , 1994, Computing.

[120]  Ignacio E. Grossmann,et al.  Using convex nonlinear relaxations in the global optimization of nonconvex generalized disjunctive programs , 2013, Comput. Chem. Eng..

[121]  Oliver Stein,et al.  Deterministic upper bounds for spatial branch-and-bound methods in global minimization with nonconvex constraints , 2015 .

[122]  David L. Woodruff,et al.  Stochastic optimization models in forest planning: a progressive hedging solution approach , 2015, Ann. Oper. Res..

[123]  Jong-Shi Pang,et al.  Error bounds in mathematical programming , 1997, Math. Program..

[124]  Oliver Stein,et al.  On generalized semi-infinite optimization and bilevel optimization , 2002, Eur. J. Oper. Res..

[125]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[126]  I. Grossmann,et al.  New algorithms for nonlinear generalized disjunctive programming , 2000 .

[127]  M. Stolpe,et al.  Truss topology optimization with discrete design variables—Guaranteed global optimality and benchmark examples , 2007 .

[128]  A. Mitsos Global optimization of semi-infinite programs via restriction of the right-hand side , 2011 .

[129]  M. Bendsøe,et al.  Optimization methods for truss geometry and topology design , 1994 .

[130]  Richard L. Church,et al.  Forest management models and combinatorial algorithms: analysis of state of the art , 2000, Ann. Oper. Res..

[131]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[132]  Rainer Tichatschke,et al.  A Branch-and-Bound Approach for Solving a Class of Generalized Semi-infinite Programming Problems , 1998, J. Glob. Optim..

[133]  Ignacio E. Grossmann,et al.  A disjunctive programming approach for the optimal design of reactive distillation columns , 2001 .