Stability and Superstability of Generalized (Θ, Φ)-Derivations in Non-Archimedean Algebras: Fixed Point Theorem via the Additive Cauchy Functional Equation

Let 𝐴 be an algebra, and let 𝜃, 𝜙 be ring automorphisms of 𝐴. An additive mapping 𝐻∶𝐴→𝐴 is called a (𝜃,𝜙)-derivation if 𝐻(𝑥𝑦)=𝐻(𝑥)𝜃(𝑦)

[1]  A. Ebadian,et al.  Stability of a Functional Equation Deriving from Cubic and Quartic Functions , 2008, 0812.5020.

[2]  A Fixed Point Approach to Superstability of Generalized Derivations on Non-Archimedean Banach Algebras , 2011 .

[3]  Belaid Bouikhalene,et al.  ULAM-GAVRUTA-RASSIAS STABILITY OF A LINEAR FUNCTIONAL EQUATION , 2007 .

[4]  A. C. M. van Rooij,et al.  Non-Archimedean functional analysis , 1978 .

[5]  Kamel Mirmostafaee,et al.  NON-ARCHIMEDEAN STABILITY OF QUADRATIC EQUATIONS , 2010 .

[6]  J. Rassias Solution of a problem of Ulam , 1989 .

[7]  Paisan Nakmahachalasint,et al.  Hyers-Ulam-Rassias and Ulam-Gavruta-Rassias Stabilities of an Additive Functional Equation in Several Variables , 2007, Int. J. Math. Math. Sci..

[8]  Zenon Moszner,et al.  On the stability of functional equations , 2009 .

[9]  John Michael Rassias,et al.  Solution and Stability of a Mixed Type Cubic and Quartic Functional Equation in Quasi-Banach Spaces , 2009 .

[10]  R. Saadati,et al.  Stability of the quadratic functional equation in non-Archimedean L-fuzzy normed spaces , 2010 .

[11]  Paisan Nakmahachalasint,et al.  On the Generalized Ulam-Gavruta-Rassias Stability of Mixed-Type Linear and Euler-Lagrange-Rassias Functional Equations , 2007, Int. J. Math. Math. Sci..

[12]  Zbigniew Gajda,et al.  On stability of additive mappings , 1991 .

[13]  H. Khodaei,et al.  Approximately generalized additive functions in several variables , 2010 .

[14]  H. Khodaei,et al.  On the Generalized Hyers-Ulam-Rassias Stability of Quadratic Functional Equations , 2009 .

[15]  Kamel Mirmostafaee,et al.  Non-Archimedean Stability of the Monomial Functional Equations , 2010 .

[16]  John Michael Rassias,et al.  On approximation of approximately linear mappings by linear mappings , 1982 .

[17]  M. Eshaghi Gordji,et al.  Solution and Stability of a Mixed Type Additive, Quadratic, and Cubic Functional Equation , 2009 .

[18]  Bouikhalene Belaid,et al.  Ulam-Gavruta-Rassias stability of the Pexider functional Equation , 2007 .

[19]  T. Rassias On the stability of the linear mapping in Banach spaces , 1978 .

[20]  E. Ansari-piri,et al.  Superstability of Generalized Derivations , 2010 .

[21]  W. A. Beyer,et al.  Stability of the Cauchy functional equation over p-adic fields. , 2006 .

[22]  Jianlian Cui,et al.  Isomorphisms and Derivations in Lie C , 2007 .

[23]  M. B. Savadkouhi,et al.  Stability of Mixed Type Cubic and Quartic Functional Equations in Random Normed Spaces , 2009 .

[24]  F. Rostami,et al.  Perturbations of Jordan higher derivations in Banach ternary algebras : An alternative fixed point approach , 2010 .

[25]  M. Gordji,et al.  GENERAL QUARTIC-CUBIC-QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN NORMED SPACES , 2010 .

[26]  R. Badora ON APPROXIMATE DERIVATIONS , 2006 .

[27]  D. G. Bourgin Approximately isometric and multiplicative transformations on continuous function rings , 1949 .

[28]  Andrei Khrennikov,et al.  Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models , 2011 .

[29]  P. Šemrl The functional equation of multiplicative derivation is superstable on standard operator algebras , 1994 .

[30]  Choonkil Park,et al.  Generalized Hyers–Ulam stability of an Euler–Lagrange type additive mapping , 2006 .

[31]  S. Ulam Problems in modern mathematics , 1964 .

[32]  John Michael Rassias,et al.  Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I) , 2009 .

[33]  K. Hensel,et al.  Über eine neue Begründung der Theorie der algebraischen Zahlen. , 1897 .

[34]  John Michael Rassias,et al.  Ulam Stability for the Orthogonally General Euler - Lagrange Type Functional Equation , 2008 .

[35]  D. H. Hyers On the Stability of the Linear Functional Equation. , 1941, Proceedings of the National Academy of Sciences of the United States of America.

[36]  George Isac,et al.  Stability of Functional Equations in Several Variables , 1998 .

[37]  A FIXED-POINT METHOD FOR PERTURBATION OF HIGHER RING DERIVATIONS IN NON-ARCHIMEDEAN BANACH ALGEBRAS , 2011 .

[38]  John Michael Rassias,et al.  Approximate ternary Jordan derivations on Banach ternary algebras , 2009 .

[39]  P. Gǎvruţa,et al.  A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings , 1994 .