Diversity of Late Blight Resistance Genes in the VIR Potato Collection

Late blight (LB) caused by the oomycete Phytophthora infestans (Mont.) de Bary is the greatest threat to potato production worldwide. Current potato breeding for LB resistance heavily depends on the introduction of new genes for resistance to P. infestans (Rpi genes). Such genes have been discovered in highly diverse wild, primitive, and cultivated species of tuber-bearing potatoes (Solanum L. section Petota Dumort.) and introgressed into the elite potato cultivars by hybridization and transgenic complementation. Unfortunately, even the most resistant potato varieties have been overcome by LB due to the arrival of new pathogen strains and their rapid evolution. Therefore, novel sources for germplasm enhancement comprising the broad-spectrum Rpi genes are in high demand with breeders who aim to provide durable LB resistance. The Genbank of the N.I. Vavilov Institute of Plant Genetic Resources (VIR) in St. Petersburg harbors one of the world’s largest collections of potato and potato relatives. In this study, LB resistance was evaluated in a core selection representing 20 species of seven Petota series according to the Hawkes (1990) classification: Bulbocastana (Rydb.) Hawkes, Demissa Buk., Longipedicellata Buk., Maglia Bitt., Pinnatisecta (Rydb.) Hawkes, Tuberosa (Rydb.) Hawkes (wild and cultivated species), and Yungasensa Corr. LB resistance was assessed in 96 accessions representing 18 species in the laboratory test with detached leaves using a highly virulent and aggressive isolate of P. infestans. The Petota species notably differed in their LB resistance: S. bulbocastanum Dun., S. demissum Lindl., S. cardiophyllum Lindl., and S. berthaultii Hawkes stood out at a high frequency of resistant accessions (7–9 points on a 9-point scale). Well-established specific SCAR markers of ten Rpi genes—Rpi-R1, Rpi-R2/Rpi-blb3, Rpi-R3a, Rpi-R3b, Rpi-R8, Rpi-blb1/Rpi-sto1, Rpi-blb2, and Rpi-vnt1—were used to mine 117 accessions representing 20 species from seven Petota series. In particular, our evidence confirmed the diverse Rpi gene location in two American continents. The structural homologs of the Rpi-R2, Rpi-R3a, Rpi-R3b, and Rpi-R8 genes were found in the North American species other than S. demissum, the species that was the original source of these genes for early potato breeding, and in some cases, in the South American Tuberosa species. The Rpi-blb1/Rpi-sto1 orthologs from S. bulbocastanum and S. stoloniferum Schlechtd et Bché were restricted to genome B in the Mesoamerican series Bulbocastana, Pinnatisecta, and Longipedicellata. The structural homologs of the Rpi-vnt1 gene that were initially identified in the South American species S. venturii Hawkes and Hjert. were reported, for the first time, in the North American series of Petota species.

[1]  N. Chalaya,et al.  Homologs of Late Blight Resistance Genes in Representatives of Tuber-Bearing Species of the Genus Solanum L. , 2022, Russian Journal of Genetics.

[2]  Jonathan D. G. Jones,et al.  The Solanum americanum pangenome and effectoromics reveal new resistance genes against potato late blight , 2022, bioRxiv.

[3]  R. Sanetomo,et al.  A de novo genome assembly of Solanum verrucosum Schlechtendal, a Mexican diploid species geographically isolated from other diploid A-genome species of potato relatives , 2022, G3.

[4]  Yongzheng Ma,et al.  The autotetraploid potato genome provides insights into highly heterozygous species , 2022, Plant biotechnology journal.

[5]  G. Bryan,et al.  Genome evolution and diversity of wild and cultivated potatoes , 2022, Nature.

[6]  Z. Yin,et al.  Late blight resistance genes in potato breeding , 2022, Planta.

[7]  R. Uptmoor,et al.  Late blight resistance in wild potato species—Resources for future potato ( Solanum tuberosum ) breeding , 2022, Plant Breeding.

[8]  M. Spanoghe,et al.  Genetic Diversity Trends in the Cultivated Potato: A Spatiotemporal Overview , 2022, Biology.

[9]  H. Juárez,et al.  Screening South American potato landraces and potato wild relatives for novel sources of late blight resistance. , 2022, Plant disease.

[10]  K. Raman,et al.  Assessment of Wild Solanum Species for Resistance to Phytophthora infestans (Mont.) de Bary in the Toluca Valley, Mexico , 2022, American Journal of Potato Research.

[11]  Liping Jin,et al.  Late Blight Resistance Evaluation and Genome-Wide Assessment of Genetic Diversity in Wild and Cultivated Potato Species , 2021, Frontiers in Plant Science.

[12]  E. Khavkin Plant–Pathogen Molecular Dialogue: Evolution, Mechanisms and Agricultural Implementation , 2021, Russian Journal of Plant Physiology.

[13]  E. Khavkin,et al.  Stacking Resistance Genes in Multiparental Interspecific Potato Hybrids to Anticipate Late Blight Outbreaks , 2021, Agronomy.

[14]  M. Kumar,et al.  Genome sequence analysis provides insights on genomic variation and late blight resistance genes in potato somatic hybrid (parents and progeny) , 2021, Molecular Biology Reports.

[15]  D. Weigel,et al.  Plant NLR diversity: the known unknowns of pan-NLRomes. , 2020, The Plant cell.

[16]  R. Visser,et al.  Solyntus, the New Highly Contiguous Reference Genome for Potato (Solanum tuberosum) , 2020, G3.

[17]  D. Halterman,et al.  Screening of wild potatoes identifies new sources of late blight resistance. , 2020, Plant disease.

[18]  A. von Haeseler,et al.  A compendium of genome-wide sequence reads from NBS (nucleotide binding site) domains of resistance genes in the common potato , 2020, Scientific Reports.

[19]  Jonathan D. G. Jones,et al.  A complex resistance locus in Solanum americanum recognizes a conserved Phytophthora effector , 2020, Nature Plants.

[20]  R. Ortiz Genomic-Led Potato Breeding for Increasing Genetic Gains: Achievements and Outlook , 2020 .

[21]  М. А. Кузнецова,et al.  Южноамериканские виды Solanum alandiae Card. и S. okadae Hawkes et Hjerting как потенциальные источники генов устойчивости к фитофторозу картофеля , 2020 .

[22]  N. Anglin,et al.  Ex Situ Conservation of Potato [Solanum Section Petota (Solanaceae)] Genetic Resources in Genebanks , 2020, The Potato Crop.

[23]  M. Ghislain,et al.  The Genes and Genomes of the Potato , 2020, The Potato Crop.

[24]  N. Anglin,et al.  Structural genome analysis in cultivated potato taxa , 2019, Theoretical and Applied Genetics.

[25]  Liping Jin,et al.  Comparative Transcriptome Profiling Reveals Compatible and Incompatible Patterns of Potato Toward Phytophthora infestans , 2019, G3: Genes, Genomes, Genetics.

[26]  Sheri Sanders,et al.  Cultivar-specific transcriptome and pan-transcriptome reconstruction of tetraploid potato , 2019, bioRxiv.

[27]  E. Khavkin,et al.  Polymorphisms and Evolution of Solanum bulbocastanum Genes for Broad-Spectrum Resistance to Phytophthora infestans , 2019, Russian Journal of Plant Physiology.

[28]  R. Stam,et al.  Subsets of NLR genes show differential signatures of adaptation during colonisation of new habitats. , 2019, The New phytologist.

[29]  S. Jansky,et al.  Potato Germplasm Enhancement Enters the Genomics Era , 2019, Agronomy.

[30]  D. Spooner,et al.  Analyses of 202 plastid genomes elucidate the phylogeny of Solanum section Petota , 2019, Scientific Reports.

[31]  J. Kruse,et al.  Screening of wild potato genetic resources for combined resistance to late blight on tubers and pale potato cyst nematodes , 2019, Euphytica.

[32]  Jose C. Tovar,et al.  Stacking three late blight resistance genes from wild species directly into African highland potato varieties confers complete field resistance to local blight races , 2018, Plant biotechnology journal.

[33]  Li Wang,et al.  The extent of adaptive wild introgression in crops. , 2018, The New phytologist.

[34]  J. Vossen,et al.  Tracking disease resistance deployment in potato breeding by enrichment sequencing , 2018, bioRxiv.

[35]  Sudhir Kumar,et al.  MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.

[36]  Alexandre P. Marand,et al.  Genome sequence of M6, a diploid inbred clone of the high‐glycoalkaloid‐producing tuber‐bearing potato species Solanum chacoense, reveals residual heterozygosity , 2018, The Plant journal : for cell and molecular biology.

[37]  M. Freeling,et al.  Gene retention, fractionation and subgenome differences in polyploid plants , 2018, Nature Plants.

[38]  Jonathan D. G. Jones,et al.  Identification and rapid mapping of a gene conferring broad-spectrum late blight resistance in the diploid potato species Solanum verrucosum through DNA capture technologies , 2018, Theoretical and Applied Genetics.

[39]  D. Spooner,et al.  Genomic Analyses Yield Markers for Identifying Agronomically Important Genes in Potato. , 2018, Molecular plant.

[40]  S. Feingold,et al.  Genetic Diversity in Argentine Andean Potatoes by Means of Functional Markers , 2018, American Journal of Potato Research.

[41]  R. Visser,et al.  Two different R gene loci co-evolved with Avr2 of Phytophthora infestans and confer distinct resistance specificities in potato , 2018, Studies in mycology.

[42]  D. Spooner,et al.  The Evolution of Potato Breeding , 2018 .

[43]  E. M. Farré,et al.  Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato , 2017, Proceedings of the National Academy of Sciences.

[44]  J. Bradshaw Review and Analysis of Limitations in Ways to Improve Conventional Potato Breeding , 2017, Potato Research.

[45]  E. Khavkin,et al.  Two orthologs of late blight resistance gene R1 in wild and cultivated potato , 2017, Russian Journal of Plant Physiology.

[46]  S. Jansky,et al.  Are We Getting Better at Using Wild Potato Species in Light of New Tools , 2017 .

[47]  Y. Hang,et al.  Distinct Patterns of Gene Gain and Loss: Diverse Evolutionary Modes of NBS-Encoding Genes in Three Solanaceae Crop Species , 2017, G3: Genes, Genomes, Genetics.

[48]  Е. В. Рогозина,et al.  Мобилизация, сохранение и изучение генетических ресурсов культивируемого и дикорастущего картофеля , 2017 .

[49]  K. Gardner,et al.  Understanding potato with the help of genomics , 2017 .

[50]  G. Bryan,et al.  Genome Sequence-Based Marker Development and Genotyping in Potato , 2017 .

[51]  Ryoko Machida-Hirano,et al.  Potato Genetic Resources , 2017 .

[52]  R. Visser,et al.  The Solanum demissumR8 late blight resistance gene is an Sw-5 homologue that has been deployed worldwide in late blight resistant varieties , 2016, Theoretical and Applied Genetics.

[53]  G. Bryan,et al.  Utilizing “Omic” Technologies to Identify and Prioritize Novel Sources of Resistance to the Oomycete Pathogen Phytophthora infestans in Potato Germplasm Collections , 2016, Front. Plant Sci..

[54]  Jiming Jiang,et al.  Genome Reduction Uncovers a Large Dispensable Genome and Adaptive Role for Copy Number Variation in Asexually Propagated Solanum tuberosum[OPEN] , 2016, Plant Cell.

[55]  R. Visser,et al.  Durable Late Blight Resistance in Potato Through Dynamic Varieties Obtained by Cisgenesis: Scientific and Societal Advances in the DuRPh Project , 2016, Potato Research.

[56]  R. Visser,et al.  Transformation of the potato variety Desiree with single or multiple resistance genes increases resistance to late blight under field conditions , 2015 .

[57]  D. Spooner,et al.  Testing Taxonomic Predictivity of Foliar and Tuber Resistance to Phytophthora infestans in Wild Relatives of Potato. , 2015, Phytopathology.

[58]  C. Ritland,et al.  Review of Potato Molecular Markers to Enhance Trait Selection , 2015, American Journal of Potato Research.

[59]  M. Ercolano,et al.  The Solanum commersonii Genome Sequence Provides Insights into Adaptation to Stress Conditions and Genome Evolution of Wild Potato Relatives , 2015, Plant Cell.

[60]  M. Hardigan,et al.  Taxonomy and Genetic Differentiation among Wild and Cultivated Germplasm of Solanum sect. Petota , 2015, The plant genome.

[61]  Ryoko Machida-Hirano Diversity of potato genetic resources , 2015, Breeding science.

[62]  R. Visser,et al.  Characterisation of the late blight resistance in potato differential MaR9 reveals a qualitative resistance gene, R9a, residing in a cluster of Tm-22 homologs on chromosome IX , 2015, Theoretical and Applied Genetics.

[63]  S. Sharma,et al.  Allele Mining in Solanum Germplasm: Cloning and Characterization of RB-Homologous Gene Fragments from Late Blight Resistant Wild Potato Species , 2015, Plant Molecular Biology Reporter.

[64]  M. Lenman,et al.  Effector-driven marker development and cloning of resistance genes against Phytophthora infestans in potato breeding clone SW93-1015 , 2015, Theoretical and Applied Genetics.

[65]  D. Spooner,et al.  Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes , 2014, The Botanical Review.

[66]  G. Forbes,et al.  Wide Phenotypic Diversity for Resistance to Phytophthora infestans Found in Potato Landraces from Peru. , 2014, Plant disease.

[67]  R. Visser,et al.  Development of late blight resistant potatoes by cisgene stacking , 2014, BMC Biotechnology.

[68]  E. Khavkin,et al.  SCAR markers for the RB/Rpi-blb1 gene of potato late blight resistance [Conference poster]. , 2014 .

[69]  E. Khavkin,et al.  Structural homologues of CC-NBS-LRR genes for potato late blight resistance in wild Solanum species [Conference poster]. , 2014 .

[70]  J. Vossen,et al.  Mining the Genus Solanum for Increasing Disease Resistance , 2014 .

[71]  Jonathan D. G. Jones,et al.  Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations , 2013, The Plant journal : for cell and molecular biology.

[72]  B. Trognitz,et al.  Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. , 2013, Molecular plant pathology.

[73]  B. Singh,et al.  Molecular markers for late blight resistance breeding of potato: an update , 2013 .

[74]  C. Gebhardt Bridging the gap between genome analysis and precision breeding in potato. , 2013, Trends in genetics : TIG.

[75]  Richard G. F. Visser,et al.  Naturally occurring allele diversity allows potato cultivation in northern latitudes , 2013, Nature.

[76]  John T Jones,et al.  Crops that feed the world 8: Potato: are the trends of increased global production sustainable? , 2012, Food Security.

[77]  John T Jones,et al.  Crops that feed the world 8: Potato: are the trends of increased global production sustainable? , 2012, Food Security.

[78]  M. Chrzanowska,et al.  Resistance to Pathogens of the Potato Accessions from the Collection of N. I. Vavilov Institute of Plant Industry (VIR) , 2012, American Journal of Potato Research.

[79]  Rachel S. Meyer,et al.  Evolutionary meta-analysis of solanaceous resistance gene and solanum resistance gene analog sequences and a practical framework for cross-species comparisons. , 2012, Molecular plant-microbe interactions : MPMI.

[80]  Edward S. Buckler,et al.  Crop genomics: advances and applications , 2011, Nature Reviews Genetics.

[81]  Leighton Pritchard,et al.  Identification and localisation of the NB-LRR gene family within the potato genome , 2012, BMC Genomics.

[82]  R. Visser,et al.  Broad spectrum late blight resistance in potato differential set plants MaR8 and MaR9 is conferred by multiple stacked R genes , 2011, Theoretical and Applied Genetics.

[83]  J. Vossen,et al.  Understanding and exploiting late blight resistance in the age of effectors. , 2011, Annual review of phytopathology.

[84]  David M. A. Martin,et al.  Genome sequence and analysis of the tuber crop potato , 2011, Nature.

[85]  E. Khavkin,et al.  SCAR markers of the R-genes and germplasm of wild Solanum species for breeding late blight-resistant potato cultivars , 2011, Plant Genetic Resources.

[86]  E. Khavkin,et al.  Allele mining in the gene pool of wild Solanum species for homologues of late blight resistance gene RB/Rpi-blb1 , 2011, Plant Genetic Resources.

[87]  M. Smulders,et al.  What's in a name; Genetic structure in Solanum section Petota studied using population-genetic tools , 2011, BMC Evolutionary Biology.

[88]  R. Visser,et al.  Diversity, distribution, and evolution of Solanum bulbocastanum late blight resistance genes. , 2010, Molecular plant-microbe interactions : MPMI.

[89]  M. Pel Mapping, isolation and characterization of genes responsible for late blight resistance in potato. , 2010 .

[90]  A. Lokossou Dissection of the major late blight resistance cluster on potato linkage group IV , 2010 .

[91]  N. Champouret Functional genomics of Phytophthora infestans effectors and Solanum resistance genes , 2010 .

[92]  V. Lefebvre,et al.  Progress in Mapping and Cloning Qualitative and Quantitative Resistance Against Phytophthora infestans in Potato and Its Wild Relatives , 2009, Potato Research.

[93]  Zhenyu Liu,et al.  Different Genetic Mechanisms Control Foliar and Tuber Resistance to Phytophthora infestans in Wild Potato Solanum verrucosum , 2009, American Journal of Potato Research.

[94]  R. Visser,et al.  Exploiting knowledge of R/Avr genes to rapidly clone a new LZ-NBS-LRR family of late blight resistance genes from potato linkage group IV. , 2009, Molecular plant-microbe interactions : MPMI.

[95]  Jonathan D. G. Jones,et al.  Mapping and cloning of late blight resistance genes from Solanum venturii using an interspecific candidate gene approach. , 2009, Molecular plant-microbe interactions : MPMI.

[96]  Jonathan D. G. Jones,et al.  Rpi-vnt1.1, a Tm-2(2) homolog from Solanum venturii, confers resistance to potato late blight. , 2009, Molecular plant-microbe interactions : MPMI.

[97]  E. V. D. Vossen,et al.  Allele mining in Solanum: conserved homologues of Rpi-blb1 are identified in Solanum stoloniferum , 2008, Theoretical and Applied Genetics.

[98]  Zhenyu Liu,et al.  Identification and characterization of RB-orthologous genes from the late blight resistant wild potato species Solanum verrucosum , 2006 .

[99]  Andy Pereira,et al.  The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. , 2005, The Plant journal : for cell and molecular biology.

[100]  Jiming Jiang,et al.  The R1 resistance gene cluster contains three groups of independently evolving, type I R1 homologues and shows substantial structural variation among haplotypes of Solanum demissum. , 2005, The Plant journal : for cell and molecular biology.

[101]  Richard C. Moore,et al.  The evolutionary dynamics of plant duplicate genes. , 2005, Current opinion in plant biology.

[102]  K. Budín Genetic foci of Solanum species, Petota Dumort, resistant to Phytophthora infestans (Mont.) De Bary , 2002, Genetic Resources and Crop Evolution.

[103]  R. Nelson,et al.  Evaluation of Wild Potato Species for Resistance to Late Blight , 2000 .

[104]  J. G. Hawkes,et al.  The potato: evolution, biodiversity and genetic resources , 1990 .

[105]  P. Harris The Potato Crop , 1978, Springer US.

[106]  D. S. Correll The Potato and Its Wild Relatives , 1963 .

[107]  Systematics of the Potato , 1944, Nature.