Motivic action for Siegel modular forms

We study the coherent cohomology of automorphic sheaves corresponding to Siegel modular forms $f$ of low weight on ${\rm GSp}(4)$ Shimura varieties. Inspired by the work of Prasanna--Venkatesh on singular cohomology of locally symmetric spaces, we propose a conjecture that explains all the contributions of a Hecke eigensystem to coherent cohomology in terms of the action of a motivic cohomology group. Under some technical conditions, we prove that our conjecture is equivalent to Beilinson's conjecture for the adjoint $L$-function of $f$. We also prove some unconditional results in special cases. For a lift $f$ of a Hilbert modular form $f_0$ to ${\rm GSp}(4)$, we produce elements in the motivic cohomology group for which the conjecture holds, using the results of Ramakrishnan on the Asai $L$-function of $f_0$. For a lift $f$ of a Bianchi modular form $f_0$ to ${\rm GSp}(4)$, we show that our conjecture for $f$ is equivalent to the conjecture of Prasanna-Venkatesh for $f_0$, thus establishing a connection between the motivic action conjectures for locally symmetric spaces of non-hermitian type and those for coherent cohomology of Shimura varieties.

[1]  Gyujin Oh Coherent cohomology of Shimura varieties, motivic cohomology, and archimedean $L$-packets , 2022, 2211.17233.

[2]  Akshay Venkatesh,et al.  The Derived Hecke Algebra for Dihedral Weight One Forms , 2022, Michigan Mathematical Journal.

[3]  E. Lecouturier On Triple Product L-Functions and a Conjecture of Harris–Venkatesh , 2022, International Mathematics Research Notices.

[4]  A. Horawa Motivic action on coherent cohomology of Hilbert modular varieties , 2020, 2009.14400.

[5]  Atsushi Ichino,et al.  On Petersson norms of generic cusp forms and special values of adjoint L-functions for GSp4 , 2019, American Journal of Mathematics.

[6]  P. Scholze,et al.  Potential automorphy over CM fields , 2018, Annals of Mathematics.

[7]  Frank Calegari,et al.  Abelian surfaces over totally real fields are potentially modular , 2018, Publications mathématiques de l'IHÉS.

[8]  J. Tilouine,et al.  Integral period relations and congruences , 2018, Algebra & Number Theory.

[9]  Jun Su Coherent cohomology of Shimura varieties and automorphic forms , 2018, 1810.12056.

[10]  Toby Gee,et al.  Arthur's multiplicity formula for GSp$_4$ and restriction to Sp$_4$ , 2018, 1807.03988.

[11]  J. Voight,et al.  On the paramodularity of typical abelian surfaces , 2018, Algebra & Number Theory.

[12]  Chris Williams,et al.  p-adic Asai L-functions of Bianchi modular forms , 2018, Algebra & Number Theory.

[13]  Ralf Schmidt Archimedean aspects of Siegel modular forms of degree 2 , 2017 .

[14]  Michael Harris,et al.  Derived Hecke Algebra for Weight One Forms , 2017, Exp. Math..

[15]  Akshay Venkatesh,et al.  Automorphic cohomology, motivic cohomology, and the adjoint $L$-function , 2016, 1609.06370.

[16]  Akshay Venkatesh DERIVED HECKE ALGEBRA AND COHOMOLOGY OF ARITHMETIC GROUPS , 2016, Forum of Mathematics, Pi.

[17]  Akshay Venkatesh,et al.  Derived Galois deformation rings , 2016, 1608.07236.

[18]  Ariel Pacetti,et al.  Theta lifts of Bianchi modular forms and applications to paramodularity , 2014, J. Lond. Math. Soc..

[19]  S. Siksek,et al.  Elliptic curves over real quadratic fields are modular , 2013, 1310.7088.

[20]  Zhengyu Mao,et al.  A conjecture on Whittaker-Fourier coefficients of cusp forms , 2013, 1309.3190.

[21]  Kai-Wen Lan Arithmetic Compactifications of PEL-Type Shimura Varieties , 2013 .

[22]  Frank Calegari,et al.  Modularity lifting beyond the Taylor–Wiles method , 2012, 1207.4224.

[23]  B. Roberts,et al.  Siegel modular forms of degree two attached to Hilbert modular forms , 2010, 1006.5105.

[24]  K. Kramer,et al.  Paramodular Abelian Varieties of Odd Conductor , 2010, 1004.4699.

[25]  G. Muić Intertwining operators and composition series of generalized and degenerate principal series for Sp(4,R) , 2009 .

[26]  R. Weissauer Endoscopy for GSp(4) and the Cohomology of Siegel Modular Threefolds , 2009 .

[27]  W. Gan,et al.  The Local Langlands Conjecture for GSp(4) , 2007, 0805.2731.

[28]  Shuichiro Takeda Some local-global non-vanishing results for theta lifts from orthogonal groups , 2006, math/0603072.

[29]  Tomonori Moriyama Entireness of the Spinor L-functions for certain generic cusp forms on GSp(2) , 2004 .

[30]  K. Roberts,et al.  Thesis , 2002 .

[31]  G. Kings Higher regulators, Hilbert modular surfaces, and special values of $L$-functions , 1998 .

[32]  J. Hoffstein,et al.  Nonvanishing theorems for automorphic L-functions on GL(2) , 1995 .

[33]  Coherent cohomology, limits of discrete series, and Galois conjugation , 1994 .

[34]  Richard Taylor,et al.  l-adic representations associated to modular forms over imaginary quadratic fields , 1993 .

[35]  J. Rogawski,et al.  Motives for Hilbert modular forms , 1993 .

[36]  Richard Taylor Galois representations associated to Siegel modular forms of low weight , 1991 .

[37]  J. Milne Automorphic vector bundles on connected Shimura varieties , 1988 .

[38]  A. A. Beilinson,et al.  Higher regulators and values of L-functions , 1985 .

[39]  M. Harris Arithmetic vector bundles and automorphic forms on Shimura varieties. I , 1985 .

[40]  H. Yoshida Siegel's modular forms and the arithmetic of quadratic forms , 1980 .

[41]  G. Shimura The special values of the zeta functions associated with Hilbert modular forms , 1978 .

[42]  Ihrer Grenzgebiete,et al.  Ergebnisse der Mathematik und ihrer Grenzgebiete , 1975, Sums of Independent Random Variables.

[43]  Berkeley California Disclaimer,et al.  University of California , 1886, The American journal of dental science.

[44]  X. Morales Abelian surfaces , Siegel modular forms , and the Paramodularity Conjecture , 2021 .

[45]  Kai-Wen Lan Higher Koecher’s principle , 2016 .

[46]  Adam Kaye Arithmetic of the Asai L-function for Hilbert Modular Forms. , 2016 .

[47]  Takashi Ichikawa Vector-valued p-adic Siegel modular forms , 2014 .

[48]  G. Harcos,et al.  ℓ-adic Representations Associated to Modular Forms over Imaginary Quadratic Fields , 2007 .

[49]  B. Roberts,et al.  On Modular Forms for the Paramodular Group , 2005 .

[50]  D. Ramakrishnan,et al.  Contributions to automorphic forms, geometry, and number theory , 2004 .

[51]  B. Roberts Global $L$-packets for GSp(2) and theta lifts , 2001, Documenta Mathematica.

[52]  Noritomo Kozima On special values of standard L -functions attached to vector valued Siegel modular forms , 2000 .

[53]  A. Scholl Integral Elements in K-Theory and Products of Modular Curves , 2000 .

[54]  E. Urban Formes automorphes cuspidales pour $GL_2$ sur un corps quadratique imaginaire. Valeurs spéciales de fonctions $L$ et congruences , 1995 .

[55]  J. Cremona,et al.  Periods of Cusp forms and elliptic curves over imaginary quadratic fields , 1994 .

[56]  M. Harris Period invariants of Hilbert modular forms, I: Trilinear differential operators and L-functions , 1990 .

[57]  P. Schneider,et al.  Beilinson's conjectures on special values of L-functions , 1988 .

[58]  A. W. Knapp Representation theory of semisimple groups , 1986 .

[59]  J. Waldspurger Quelques propriétés arithmétiques de certaines formes automorphes sur GL$(2)$ , 1985 .

[60]  H. Yoshida On Siegel modular forms obtained form theta series. , 1984 .

[61]  P. Deligne Valeurs de fonctions L et périodes d’intégrales , 1979 .

[62]  M. Rapoport Compactifications de l'espace de modules de Hilbert-Blumenthal , 1978 .

[63]  F. N. Cole THE AMERICAN MATHEMATICAL SOCIETY. , 1910, Science.

[64]  Algebraicity of critical values of adjoint L -functions for GSp 4 , 2022 .