Information Extraction from the World Wide Web

[1]  Kazem Taghva,et al.  Address extraction using hidden Markov models , 2005, IS&T/SPIE Electronic Imaging.

[2]  Craig A. Knoblock,et al.  Hierarchical Wrapper Induction for Semistructured Information Sources , 2004, Autonomous Agents and Multi-Agent Systems.

[3]  Dayne Freitag,et al.  Machine Learning for Information Extraction in Informal Domains , 2000, Machine Learning.

[4]  Stephen Soderland,et al.  Learning Information Extraction Rules for Semi-Structured and Free Text , 1999, Machine Learning.

[5]  William W. Cohen,et al.  A flexible learning system for wrapping tables and lists in HTML documents , 2002, WWW.

[6]  Mark Craven,et al.  Representing Sentence Structure in Hidden Markov Models for Information Extraction , 2001, IJCAI.

[7]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[8]  Dan Roth,et al.  The Use of Classifiers in Sequential Inference , 2001, NIPS.

[9]  Christopher D. Manning,et al.  Enriching the Knowledge Sources Used in a Maximum Entropy Part-of-Speech Tagger , 2000, EMNLP.

[10]  Henry A. Kautz,et al.  Hardening soft information sources , 2000, KDD '00.

[11]  Raymond J. Mooney,et al.  A Mutually Beneficial Integration of Data Mining and Information Extraction , 2000, AAAI/IAAI.

[12]  Dayne Freitag,et al.  Boosted Wrapper Induction , 2000, AAAI/IAAI.

[13]  William W. Cohen Data integration using similarity joins and a word-based information representation language , 2000, TOIS.

[14]  William W. Cohen Automatically Extracting Features for Concept Learning from the Web , 2000, International Conference on Machine Learning.

[15]  Scott Miller,et al.  A Novel Use of Statistical Parsing to Extract Information from Text , 2000, ANLP.

[16]  Craig A. Knoblock,et al.  A hierarchical approach to wrapper induction , 1999, AGENTS '99.

[17]  Yoram Singer,et al.  Unsupervised Models for Named Entity Classification , 1999, EMNLP.

[18]  Dayne Freitag,et al.  Information Extraction from HTML: Application of a General Machine Learning Approach , 1998, AAAI/IAAI.

[19]  William W. Cohen Integration of heterogeneous databases without common domains using queries based on textual similarity , 1998, SIGMOD '98.

[20]  Raymond J. Mooney,et al.  Relational Learning of Pattern-Match Rules for Information Extraction , 1999, CoNLL.

[21]  Stephen Soderland,et al.  Learning to Extract Text-Based Information from the World Wide Web , 1997, KDD.

[22]  Richard M. Schwartz,et al.  Nymble: a High-Performance Learning Name-finder , 1997, ANLP.

[23]  Tim Leek,et al.  Information Extraction Using Hidden Markov Models , 1997 .