An Adaptive Computational Model for Salient Object Detection

Salient object detection is a basic technique for many computer vision applications. In this paper, we propose an adaptive computational model to detect the salient object in color images. Firstly, three human observation behaviors and scalable subtractive clustering techniques are used to construct attention Gaussian mixture model (AGMM) and background Gaussian mixture model (BGMM). Secondly, the Bayesian framework is employed to classify each pixel into salient object or background object. Thirdly, expectation-maximization (EM) algorithm is utilized to update the parameters of AGMM, BGMM, and Bayesian framework based on the detection results. Finally, the classification and update procedures are repeated until the detection results evolve to a steady state. Experiments on a variety of images demonstrate the robustness of the proposed method. Extensive quantitative evaluations and comparisons demonstrate that the proposed method significantly outperforms state-of-the-art methods.

[1]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[2]  Zheru Chi,et al.  Attention-driven image interpretation with application to image retrieval , 2006, Pattern Recognit..

[3]  Günther Palm,et al.  Object classification with simple visual attention and a hierarchical neural network for subsymbolic-symbolic coupling , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[4]  Bärbel Mertsching,et al.  Fast and Robust Generation of Feature Maps for Region-Based Visual Attention , 2008, IEEE Transactions on Image Processing.

[5]  Raimondo Schettini,et al.  Low-quality image enhancement using visual attention , 2007 .

[6]  Antonio Torralba,et al.  Top-down control of visual attention in object detection , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[7]  Fred Stentiford,et al.  Motion Detection using a Model of Visual Attention , 2007, 2007 IEEE International Conference on Image Processing.

[8]  Oge Marques,et al.  An Attention-Driven Model for Grouping Similar Images with Image Retrieval Applications , 2007, EURASIP J. Adv. Signal Process..

[9]  Fred Stentiford,et al.  Visual attention for region of interest coding in JPEG 2000 , 2003, J. Vis. Commun. Image Represent..

[10]  Patrick Le Callet,et al.  Does where you Gaze on an Image Affect your Perception of Quality? Applying Visual Attention to Image Quality Metric , 2007, 2007 IEEE International Conference on Image Processing.

[11]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[12]  Antonio Fernández-Caballero,et al.  Dynamic visual attention model in image sequences , 2007, Image Vis. Comput..

[13]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[14]  A. Leventhal The neural basis of visual function , 1991 .

[15]  King Ngi Ngan,et al.  Unsupervised extraction of visual attention objects in color images , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[16]  Brian Scassellati,et al.  A Behavioral Analysis of Computational Models of Visual Attention , 2007, International Journal of Computer Vision.

[17]  Christof Koch,et al.  Visual attention and target detection in cluttered natural scenes , 2001 .

[18]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[19]  Christof Koch,et al.  Feature combination strategies for saliency-based visual attention systems , 2001, J. Electronic Imaging.

[20]  Xing Xie,et al.  A visual attention model for adapting images on small displays , 2003, Multimedia Systems.

[21]  Zhiwen Yu,et al.  A Rule Based Technique for Extraction of Visual Attention Regions Based on Real-Time Clustering , 2007, IEEE Transactions on Multimedia.

[22]  Ming Yang,et al.  Spatial selection for attentional visual tracking , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Laurent Itti,et al.  Automatic foveation for video compression using a neurobiological model of visual attention , 2004, IEEE Transactions on Image Processing.

[24]  Oge Marques,et al.  Extraction of salient regions of interest using visual attention models , 2009, Electronic Imaging.

[25]  Liang-Tien Chia,et al.  Detection of visual attention regions in images using robust subspace analysis , 2008, J. Vis. Commun. Image Represent..

[26]  Anat Levin,et al.  Learning to Combine Bottom-Up and Top-Down Segmentation , 2006, ECCV.

[27]  Wei Zhang,et al.  Adaptive semantic Bayesian framework for image attention , 2008, 2008 19th International Conference on Pattern Recognition.

[28]  H. Foley,et al.  Sensation and Perception , 2019 .

[29]  Laurent Itti,et al.  An Integrated Model of Top-Down and Bottom-Up Attention for Optimizing Detection Speed , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[30]  Patrick Le Callet,et al.  A coherent computational approach to model bottom-up visual attention , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Antonio Fernández-Caballero,et al.  Visual surveillance by dynamic visual attention method , 2006, Pattern Recognit..

[32]  Heinz Hügli,et al.  Assessing the contribution of color in visual attention , 2005, Comput. Vis. Image Underst..

[33]  Robert B. Fisher,et al.  Object-based visual attention for computer vision , 2003, Artif. Intell..

[34]  Rajesh N. Davé,et al.  Robust clustering methods: a unified view , 1997, IEEE Trans. Fuzzy Syst..

[35]  Pierre Baldi,et al.  A principled approach to detecting surprising events in video , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[36]  O. Meur,et al.  Predicting visual fixations on video based on low-level visual features , 2007, Vision Research.

[37]  Nanning Zheng,et al.  Learning to Detect a Salient Object , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Laurent Itti,et al.  Beyond bottom-up: Incorporating task-dependent influences into a computational model of spatial attention , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  HongJiang Zhang,et al.  Contrast-based image attention analysis by using fuzzy growing , 2003, MULTIMEDIA '03.

[40]  Georgios S. Paschos,et al.  Perceptually uniform color spaces for color texture analysis: an empirical evaluation , 2001, IEEE Trans. Image Process..

[41]  Weisi Lin,et al.  Modeling visual attention's modulatory aftereffects on visual sensitivity and quality evaluation , 2005, IEEE Transactions on Image Processing.

[42]  Oge Marques,et al.  An unsupervised method for clustering images based on their salient regions of interest , 2006, MM '06.

[43]  Yannis Avrithis,et al.  Bottom-up spatiotemporal visual attention model for video analysis , 2007 .

[44]  James J. Clark,et al.  Game Design Guided by Visual Attention , 2007, ICEC.