Domain mobility in proteins: functional and evolutionary implications

A substantial fraction of eukaryotic proteins contains multiple domains, some of which show a tendency to occur in diverse domain architectures and can be considered mobile (or 'promiscuous'). These promiscuous domains are typically involved in protein-protein interactions and play crucial roles in interaction networks, particularly those contributing to signal transduction. They also play a major role in creating diversity of protein domain architecture in the proteome. It is now apparent that promiscuity is a volatile and relatively fast-changing feature in evolution, and that only a few domains retain their promiscuity status throughout evolution. Many such domains attained their promiscuity status independently in different lineages. Only recently, we have begun to understand the diversity of protein domain architectures and the role the promiscuous domains play in evolution of this diversity. However, many of the biological mechanisms of protein domain mobility remain shrouded in mystery. In this review, we discuss our present understanding of protein domain promiscuity, its evolution and its role in cellular function.

[1]  M. Gerstein,et al.  Protein family and fold occurrence in genomes: power-law behaviour and evolutionary model. , 2001, Journal of molecular biology.

[2]  E. Bornberg-Bauer,et al.  Domain deletions and substitutions in the modular protein evolution , 2006, The FEBS journal.

[3]  Adam Godzik,et al.  Comparative analysis of protein domain organization. , 2004, Genome research.

[4]  L. Patthy,et al.  Modules, multidomain proteins and organismic complexity , 2005, The FEBS journal.

[5]  L. Patthy Modular Assembly of Genes and the Evolution of New Functions , 2003, Genetica.

[6]  Jérôme Gouzy,et al.  ProDom: Automated Clustering of Homologous Domains , 2002, Briefings Bioinform..

[7]  László Patthy,et al.  Exons – original building blocks of proteins? , 1991, BioEssays : news and reviews in molecular, cellular and developmental biology.

[8]  George Kingsley Zipf,et al.  Human Behaviour and the Principle of Least Effort: an Introduction to Human Ecology , 2012 .

[9]  David C. Jones,et al.  CATH--a hierarchic classification of protein domain structures. , 1997, Structure.

[10]  Robert D. Finn,et al.  The Pfam protein families database , 2004, Nucleic Acids Res..

[11]  W. Gilbert,et al.  The exon theory of genes. , 1987, Cold Spring Harbor symposia on quantitative biology.

[12]  Kevin R. Thornton,et al.  The origin of new genes: glimpses from the young and old , 2003, Nature Reviews Genetics.

[13]  S. Teichmann,et al.  Domain combinations in archaeal, eubacterial and eukaryotic proteomes. , 2001, Journal of molecular biology.

[14]  M. Huynen,et al.  The frequency distribution of gene family sizes in complete genomes. , 1998, Molecular biology and evolution.

[15]  Joao Antonio Pereira,et al.  Linked: The new science of networks , 2002 .

[16]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[17]  S. Wuchty Scale-free behavior in protein domain networks. , 2001, Molecular biology and evolution.

[18]  E. Koonin,et al.  Birth and death of protein domains: A simple model of evolution explains power law behavior , 2002, BMC Evolutionary Biology.

[19]  A. Vinogradov Compactness of human housekeeping genes: selection for economy or genomic design? , 2004, Trends in genetics : TIG.

[20]  E. Koonin,et al.  The structure of the protein universe and genome evolution , 2002, Nature.

[21]  W. Gilbert,et al.  On the ancient nature of introns. , 1993, Gene.

[22]  E. Bornberg-Bauer,et al.  Evolution of circular permutations in multidomain proteins. , 2006, Molecular biology and evolution.

[23]  Andrew D. Moore,et al.  Just how versatile are domains? , 2008, BMC Evolutionary Biology.

[24]  Burkhard Rost,et al.  CHOP proteins into structural domain‐like fragments , 2004, Proteins.

[25]  Robert D. Finn,et al.  New developments in the InterPro database , 2007, Nucleic Acids Res..

[26]  Arne Elofsson,et al.  Expansion of Protein Domain Repeats , 2006, PLoS Comput. Biol..

[27]  E. Sonnhammer,et al.  Domain tree-based analysis of protein architecture evolution. , 2008, Molecular biology and evolution.

[28]  A. Elofsson,et al.  Domain rearrangements in protein evolution. , 2005, Journal of molecular biology.

[29]  M Levitt,et al.  Comprehensive assessment of automatic structural alignment against a manual standard, the scop classification of proteins , 1998, Protein science : a publication of the Protein Society.

[30]  Albert-László Barabási,et al.  Linked: The New Science of Networks , 2002 .

[31]  Narmada Thanki,et al.  CDD: a conserved domain database for interactive domain family analysis , 2006, Nucleic Acids Res..

[32]  R. Doolittle The multiplicity of domains in proteins. , 1995, Annual review of biochemistry.

[33]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[34]  J Schultz,et al.  SMART, a simple modular architecture research tool: identification of signaling domains. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[35]  E. Koonin,et al.  Evolution of protein domain promiscuity in eukaryotes. , 2008, Genome research.

[36]  Igor B. Rogozin,et al.  Analysis of evolution of exon-intron structure of eukaryotic genes , 2005, Briefings Bioinform..

[37]  C. Peterson,et al.  Topological properties of citation and metabolic networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Andrey Rzhetsky,et al.  Birth of scale-free molecular networks and the number of distinct DNA and protein domains per genome , 2001, Bioinform..

[39]  Stephen H. Bryant,et al.  Domain size distributions can predict domain boundaries , 2000, Bioinform..

[40]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[41]  Eugene V. Koonin,et al.  Biological applications of the theory of birth-and-death processes , 2005, Briefings Bioinform..

[42]  C Sander,et al.  Dictionary of recurrent domains in protein structures , 1998, Proteins.

[43]  T. Cavalier-smith,et al.  The root of the eukaryote tree pinpointed , 2003, Current Biology.

[44]  L. Patthy Genome evolution and the evolution of exon-shuffling--a review. , 1999, Gene.

[45]  Charles Gide,et al.  Cours d'économie politique , 1911 .

[46]  G. Wray,et al.  The g‐value paradox , 2002, Evolution & development.

[47]  C. Chothia,et al.  The geometry of domain combination in proteins. , 2002, Journal of molecular biology.

[48]  A. Elofsson,et al.  Multi-domain proteins in the three kingdoms of life: orphan domains and other unassigned regions. , 2005, Journal of molecular biology.

[49]  E. Koonin,et al.  The Impact of Comparative Genomics on Our Understanding of Evolution , 2000, Cell.

[50]  S. Wuchty,et al.  Evolutionary cores of domain co-occurrence networks , 2005, BMC Evolutionary Biology.

[51]  S E Brenner,et al.  Distribution of protein folds in the three superkingdoms of life. , 1999, Genome research.

[52]  D. Eisenberg,et al.  Detecting protein function and protein-protein interactions from genome sequences. , 1999, Science.

[53]  M. Gerstein,et al.  The dominance of the population by a selected few: power-law behaviour applies to a wide variety of genomic properties , 2002, Genome Biology.

[54]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[55]  T. Gisiger Scale invariance in biology: coincidence or footprint of a universal mechanism? , 2001, Biological reviews of the Cambridge Philosophical Society.

[56]  I. Shmulevich,et al.  Computational and Statistical Approaches to Genomics , 2007, Springer US.

[57]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[58]  A. Grigoriev,et al.  Significant expansion of exon-bordering protein domains during animal proteome evolution , 2005, Nucleic acids research.

[59]  D. Lancet,et al.  Modular genes with metazoan-specific domains have increased tissue specificity. , 2005, Trends in genetics : TIG.

[60]  Nello Cristianini,et al.  Introduction to computational genomics - a case studies approach , 2007 .

[61]  Julian Gough,et al.  Convergent evolution of domain architectures (is rare) , 2005, Bioinform..