An adaptive, multivariate partitioning algorithm for global optimization of nonconvex programs

In this work, we develop an adaptive, multivariate partitioning algorithm for solving nonconvex, Mixed-Integer Nonlinear Programs (MINLPs) with polynomial functions to global optimality. In particular, we present an iterative algorithm that exploits piecewise, convex relaxation approaches via disjunctive formulations to solve MINLPs that is different than conventional spatial branch-and-bound approaches. The algorithm partitions the domains of variables in an adaptive and non-uniform manner at every iteration to focus on productive areas of the search space. Furthermore, domain reduction techniques based on sequential, optimization-based bound-tightening and piecewise relaxation techniques, as a part of a presolve step, are integrated into the main algorithm. Finally, we demonstrate the effectiveness of the algorithm on well-known benchmark problems (including Pooling and Blending instances) from MINLPLib and compare our algorithm with state-of-the-art global optimization solvers. With our novel approach, we solve several large-scale instances, some of which are not solvable by state-of-the-art solvers. We also succeed in reducing the best known optimality gap for a hard, generalized pooling problem instance.

[1]  Klaus Schittkowski,et al.  Test examples for nonlinear programming codes , 1980 .

[2]  Pedro M. Castro,et al.  Tightening piecewise McCormick relaxations for bilinear problems , 2015, Comput. Chem. Eng..

[3]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[4]  Michael R. Bussieck,et al.  MINLPLib - A Collection of Test Models for Mixed-Integer Nonlinear Programming , 2003, INFORMS J. Comput..

[5]  Pedro M. Castro,et al.  Normalized multiparametric disaggregation: an efficient relaxation for mixed-integer bilinear problems , 2016, J. Glob. Optim..

[6]  James E. Falk,et al.  Jointly Constrained Biconvex Programming , 1983, Math. Oper. Res..

[7]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[8]  Emily Speakman,et al.  Volumetric Guidance for Handling Triple Products in Spatial Branch-and-Bound , 2017 .

[9]  Santanu S. Dey,et al.  Strong SOCP Relaxations for the Optimal Power Flow Problem , 2015, Oper. Res..

[10]  Pascal Van Hentenryck,et al.  Strengthening Convex Relaxations with Bound Tightening for Power Network Optimization , 2015, CP.

[11]  Shu-Cherng Fang,et al.  A Logarithmic Method for Reducing Binary Variables and Inequality Constraints in Solving Task Assignment Problems , 2013, INFORMS J. Comput..

[12]  Silvano Martello,et al.  Piecewise linear approximation of functions of two variables in MILP models , 2010, Oper. Res. Lett..

[13]  Pietro Belotti,et al.  Bound reduction using pairs of linear inequalities , 2013, J. Glob. Optim..

[14]  James R. Luedtke,et al.  Some results on the strength of relaxations of multilinear functions , 2012, Math. Program..

[15]  Anatoliy D. Rikun,et al.  A Convex Envelope Formula for Multilinear Functions , 1997, J. Glob. Optim..

[16]  Ignacio E. Grossmann,et al.  Global optimization of non-convex generalized disjunctive programs: a review on reformulations and relaxation techniques , 2017, J. Glob. Optim..

[17]  I. Karimi,et al.  Piecewise linear relaxation of bilinear programs using bivariate partitioning , 2009 .

[18]  Ignacio E. Grossmann,et al.  An improved piecewise outer-approximation algorithm for the global optimization of MINLP models involving concave and bilinear terms , 2008, Comput. Chem. Eng..

[19]  Christodoulos A. Floudas,et al.  Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO , 2016, Eur. J. Oper. Res..

[20]  Harsha Nagarajan,et al.  A Polyhedral Outer-approximation, Dynamic-discretization optimization solver, 1.x , 2017 .

[21]  Russell Bent,et al.  Optimal configurations to minimize disturbance propagation in manufacturing networks , 2017, 2017 American Control Conference (ACC).

[22]  Pedro M. Castro,et al.  Univariate parameterization for global optimization of mixed-integer polynomial problems , 2013, Eur. J. Oper. Res..

[23]  Nikolaos V. Sahinidis,et al.  Domain reduction techniques for global NLP and MINLP optimization , 2017, Constraints.

[24]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[25]  Russell Bent,et al.  Optimal Transmission Line Switching Under Geomagnetic Disturbances , 2017, IEEE Transactions on Power Systems.

[26]  Russell Bent,et al.  Convex Hull Formulations for Mixed-Integer Multilinear Functions , 2018, ArXiv.

[27]  Leo Liberti,et al.  Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..

[28]  Aleksandr Rudkevich,et al.  Adaptive convex relaxations for Gas Pipeline Network Optimization , 2017, 2017 American Control Conference (ACC).

[29]  Pascal Van Hentenryck,et al.  Convex quadratic relaxations for mixed-integer nonlinear programs in power systems , 2016, Mathematical Programming Computation.

[30]  Klaus Schittkowski,et al.  More test examples for nonlinear programming codes , 1981 .

[31]  I. Karimi,et al.  Piecewise MILP under‐ and overestimators for global optimization of bilinear programs , 2008 .

[32]  Ignacio E. Grossmann,et al.  A discretization-based approach for the optimization of the multiperiod blend scheduling problem , 2013, Comput. Chem. Eng..

[33]  M. Bagajewicz,et al.  A new approach for global optimization of a class of MINLP problems with applications to water management and pooling problems , 2012 .

[34]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[35]  Russell Bent,et al.  Tight Piecewise Convex Relaxations for Global Optimization of Optimal Power Flow , 2018, 2018 Power Systems Computation Conference (PSCC).

[36]  Myun-Seok Cheon,et al.  Solving Mixed Integer Bilinear Problems Using MILP Formulations , 2013, SIAM J. Optim..

[37]  N. Sahinidis,et al.  Global optimization of nonconvex NLPs and MINLPs with applications in process design , 1995 .

[38]  Pedro M. Castro,et al.  Optimality-based bound contraction with multiparametric disaggregation for the global optimization of mixed-integer bilinear problems , 2014, J. Glob. Optim..

[39]  Ignacio E. Grossmann,et al.  Tightening the Linear Relaxation of a Mixed Integer Nonlinear Program Using Constraint Programming , 2009, CPAIOR.

[40]  Miguel J. Bagajewicz,et al.  Novel bound contraction procedure for global optimization of bilinear MINLP problems with applications to water management problems , 2011, Comput. Chem. Eng..

[41]  Clyde L. Monma,et al.  On the Computational Complexity of Integer Programming Problems , 1978 .

[42]  Nikolaos V. Sahinidis,et al.  Analysis of Bounds for Multilinear Functions , 2001, J. Glob. Optim..

[43]  Kellen Petersen August Real Analysis , 2009 .

[44]  Christodoulos A. Floudas,et al.  Global optimization of a combinatorially complex generalized pooling problem , 2006 .

[45]  Ignacio E. Grossmann,et al.  Cutting Plane Algorithm for Convex Generalized Disjunctive Programs , 2016, INFORMS J. Comput..

[46]  Ignacio E. Grossmann,et al.  Global optimization for the synthesis of integrated water systems in chemical processes , 2006, Comput. Chem. Eng..

[47]  Russell Bent,et al.  Optimal Resilient transmission Grid Design , 2016, 2016 Power Systems Computation Conference (PSCC).

[48]  Leo Liberti,et al.  A Branch-and-Prune algorithm for the Molecular Distance Geometry Problem , 2008, Int. Trans. Oper. Res..

[49]  George L. Nemhauser,et al.  Modeling disjunctive constraints with a logarithmic number of binary variables and constraints , 2008, Math. Program..

[50]  I. Grossmann,et al.  Systematic modeling of discrete-continuous optimization models through generalized disjunctive programming , 2013 .

[51]  Leo Liberti,et al.  On feasibility based bounds tightening , 2012 .

[52]  Iain Dunning,et al.  JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..

[53]  Sonia Cafieri,et al.  On convex relaxations of quadrilinear terms , 2010, J. Glob. Optim..

[54]  Harsha Nagarajan,et al.  Tightening McCormick Relaxations for Nonlinear Programs via Dynamic Multivariate Partitioning , 2016, CP.

[55]  Christodoulos A. Floudas,et al.  GloMIQO: Global mixed-integer quadratic optimizer , 2012, Journal of Global Optimization.

[56]  Christodoulos A. Floudas,et al.  APOGEE: Global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes , 2011, Comput. Chem. Eng..

[57]  P. Belotti,et al.  On feasibility based bounds tightening 0 , 2012 .

[58]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[59]  Tobias Achterberg,et al.  SCIP: solving constraint integer programs , 2009, Math. Program. Comput..