Eulerian–Eulerian simulation of non-uniform magnetic field effects on the ferrofluid nucleate pool boiling

[1]  Habib Aminfar,et al.  Experimental study on the effect of magnetic field on critical heat flux of ferrofluid flow boiling in a vertical annulus , 2014 .

[2]  Habib Aminfar,et al.  Numerical study of non-uniform magnetic fields effects on subcooled nanofluid flow boiling , 2014 .

[3]  Saeid Vafaei,et al.  Role of nanoparticles on nanofluid boiling phenomenon: Nanoparticle deposition , 2014 .

[4]  M. Mohammadpourfard,et al.  Numerical simulation of nucleate pool boiling on the horizontal surface for ferrofluid under the effect of non-uniform magnetic field , 2014 .

[5]  J. Tu,et al.  On two-fluid modeling of nucleate boiling of dilute nanofluids , 2014 .

[6]  Jiyun Zhao,et al.  A review of nanofluid heat transfer and critical heat flux enhancement—Research gap to engineering application , 2013 .

[7]  M. Kim,et al.  The boiling phenomenon of alumina nanofluid near critical heat flux , 2013 .

[8]  A. Mourgues,et al.  Boiling behaviors and critical heat flux on a horizontal and vertical plate in saturated pool boiling with and without ZnO nanofluid , 2013 .

[9]  Y. Jeong,et al.  Experimental study on the pool boiling CHF enhancement using magnetite-water nanofluids , 2012 .

[10]  T. Okawa,et al.  Boiling time effect on CHF enhancement in pool boiling of nanofluids , 2012 .

[11]  Shrikantha S. Rao,et al.  Experimental studies on CHF enhancement in pool boiling with CuO-water nanofluid , 2012 .

[12]  Zhen-hua Liu,et al.  Pool boiling heat transfer of functionalized nanofluid under sub-atmospheric pressures , 2011 .

[13]  Chih-Wei Lee,et al.  Boiling enhancement by TiO2 nanoparticle deposition , 2011 .

[14]  T. Mckrell,et al.  Infrared thermometry study of nanofluid pool boiling phenomena , 2011, Nanoscale research letters.

[15]  P. Marty,et al.  Surface Coating with Nanofluids: The Effects on Pool Boiling Heat Transfer , 2010 .

[16]  Jacopo Buongiorno,et al.  Study of bubble growth in water pool boiling through synchronized, infrared thermometry and high-speed video , 2010 .

[17]  M. Kim,et al.  Effects of nano-fluid and surfaces with nano structure on the increase of CHF , 2010 .

[18]  S. M. You,et al.  Pool boiling characteristics of low concentration nanofluids , 2010 .

[19]  M. Rubner,et al.  Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings , 2010 .

[20]  P. Marty,et al.  Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism , 2009 .

[21]  P. Marty,et al.  How does surface wettability influence nucleate boiling , 2009 .

[22]  Wei Wei,et al.  Numerical and experimental investigation of heat transfer on heating surface during subcooled boiling flow of liquid nitrogen , 2009 .

[23]  Sarit K. Das,et al.  Survey on nucleate pool boiling of nanofluids: the effect of particle size relative to roughness , 2008 .

[24]  G. Prakash Narayan,et al.  Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes , 2007 .

[25]  Moo Hwan Kim,et al.  Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids , 2007 .

[26]  Jeongbae Kim,et al.  Experimental studies on CHF characteristics of nano-fluids at pool boiling , 2007 .

[27]  Hiroshi Yamaguchi,et al.  An application of a binary mixture of magnetic fluid for heat transport devices , 2005 .

[28]  W. Rohsenow,et al.  Nucleate pool-boiling heat transfer. I: review of parametric effects of boiling surface , 2004 .

[29]  Liu Hui,et al.  Experiments and mechanism analysis of pool boiling heat transfer enhancement with water-based magnetic fluid , 2004 .

[30]  Soon-Heung Chang,et al.  Boiling heat transfer performance and phenomena of Al2O 3-water nano-fluids from a plain surface in a pool , 2004 .

[31]  J. H. Kim,et al.  Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer , 2003 .

[32]  J. Tu,et al.  On numerical modelling of low-pressure subcooled boiling flows , 2002 .

[33]  P. Wust,et al.  Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles , 1999 .

[34]  J. Flaherty,et al.  Analysis of phase distribution in fully developed laminar bubbly two-phase flow , 1991 .

[35]  N. Zuber,et al.  Drag coefficient and relative velocity in bubbly, droplet or particulate flows , 1979 .

[36]  A. M. Judd Convective Boiling and Condensation. , 1973 .

[37]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[38]  N. Zuber ON THE DISPERSED TWO-PHASE FLOW IN THE LAMINAR FLOW REGIME. , 1964 .

[39]  O. K. Crosser,et al.  Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .

[40]  H. Brinkman The Viscosity of Concentrated Suspensions and Solutions , 1952 .

[41]  Sub Lee Song,et al.  CHF enhancement of SiC nanofluid in pool boiling experiment , 2014 .

[42]  E. Tzirtzilakis,et al.  Three-Dimensional Magnetic Fluid Boundary Layer Flow Over a Linearly Stretching Sheet , 2010 .

[43]  S. Suresh,et al.  New analytical models to investigate thermal conductivity of nanofluids. , 2009, Journal of Nanoscience and Nanotechnology.

[44]  T. Frank,et al.  The Favre Averaged Drag Model for Turbulent Dispersion in Eulerian Multi-Phase Flows , 2004 .

[45]  J. Bertin Engineering fluid mechanics , 1984 .

[46]  M. Ishii Thermo-fluid dynamic theory of two-phase flow , 1975 .

[47]  V. I. Tolubinsky,et al.  VAPOUR BUBBLES GROWTH RATE AND HEAT TRANSFER INTENSITY AT SUBCOOLED WATER BOILING , 1970 .