Direct measurement of the biphoton Wigner function through two-photon interference

The Hong-Ou-Mandel (HOM) experiment was a benchmark in quantum optics, evidencing the non–classical nature of photon pairs, later generalized to quantum systems with either bosonic or fermionic statistics. We show that a simple modification in the well-known and widely used HOM experiment provides the direct measurement of the Wigner function. We apply our results to one of the most reliable quantum systems, consisting of biphotons generated by parametric down conversion. A consequence of our results is that a negative value of the Wigner function is a sufficient condition for non-gaussian entanglement between two photons. In the general case, the Wigner function provides all the required information to infer entanglement using well known necessary and sufficient criteria. The present work offers a new vision of the HOM experiment that further develops its possibilities to realize fundamental tests of quantum mechanics using simple optical set-ups.

[1]  J. Sperling,et al.  Verifying continuous-variable entanglement in finite spaces , 2008, 0809.3197.

[2]  R. O. Vallejos,et al.  Semiclassical Wigner distribution for a two-mode entangled state generated by an optical parametric oscillator , 2010, 1107.2667.

[3]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[4]  J H Eberly,et al.  Analysis and interpretation of high transverse entanglement in optical parametric down conversion. , 2004, Physical review letters.

[5]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[6]  M. V. van Exter,et al.  Measurement of the spiral spectrum of entangled two-photon states. , 2010, Physical review letters.

[7]  C. Silberhorn,et al.  Broadband frequency mode entanglement in waveguided parametric downconversion. , 2008, Optics letters.

[8]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[9]  Direct measurement of the spatial Wigner function with area-integrated detection. , 2003, Optics letters.

[10]  S. Solimeno,et al.  Experimental analysis of decoherence in continuous-variable bipartite systems , 2012 .

[11]  Witnessing entanglement with second-order interference , 2004, quant-ph/0408047.

[12]  S. Walborn,et al.  Spatial correlations in parametric down-conversion , 2010, 1010.1236.

[13]  Sub-Planck phase-space structures and Heisenberg-limited measurements (7 pages) , 2005, quant-ph/0508093.

[14]  Jinhyoung Lee,et al.  Quantum-information processing for a coherent superposition state via a mixedentangled coherent channel , 2001, quant-ph/0104090.

[15]  Measurement of the transverse spatial quantum state of light at the single-photon level. , 2005, Optics letters.

[16]  C H Monken,et al.  Multimode Hong-Ou-mandel interference. , 2003, Physical review letters.

[17]  P. H. Souto Ribeiro,et al.  Continuous-variable quantum computation with spatial degrees of freedom of photons , 2011, 1106.3049.

[18]  A. Eckstein,et al.  Direct bell states generation on a III-V semiconductor chip at room temperature , 2013, CLEO: 2013.

[19]  A. Zeilinger,et al.  Experimental one-way quantum computing , 2005, Nature.

[20]  I. Walmsley,et al.  Single-photon-level quantum memory at room temperature. , 2010, Physical review letters.

[21]  Simón Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.

[22]  A. Lemaître,et al.  Two-photon interference with a semiconductor integrated source at room temperature. , 2010, Optics express.

[23]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[24]  Stefan Preble,et al.  Single photon adiabatic wavelength conversion , 2012 .

[25]  P. Grangier,et al.  Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities , 1982 .

[26]  Yuan Liang Lim,et al.  Generalized Hong–Ou–Mandel experiments with bosons and fermions , 2005, quant-ph/0505034.

[27]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[28]  G. Fève,et al.  Coherence and Indistinguishability of Single Electrons Emitted by Independent Sources , 2013, Science.

[29]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[30]  Megan R. Ray,et al.  Verifying entanglement in the Hong-Ou-Mandel dip , 2011, 1101.0846.

[31]  Jaehak Lee,et al.  Entanglement distillation for continuous variables in a thermal environment: Effectiveness of a non-Gaussian operation , 2013, 1304.0186.

[32]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.