The Structure of ClpB A Molecular Chaperone that Rescues Proteins from an Aggregated State

[1]  Jimena Weibezahn,et al.  Roles of Individual Domains and Conserved Motifs of the AAA+ Chaperone ClpB in Oligomerization, ATP Hydrolysis, and Chaperone Activity* , 2003, The Journal of Biological Chemistry.

[2]  Jingzhi Li,et al.  Crystal structure of the E. coli Hsp100 ClpB N-terminal domain. , 2003, Structure.

[3]  J. Reinstein,et al.  The N Terminus of ClpB from Thermus thermophilus Is Not Essential for the Chaperone Activity* , 2002, The Journal of Biological Chemistry.

[4]  L. Esser,et al.  Crystal Structure of ClpA, an Hsp100 Chaperone and Regulator of ClpAP Protease* , 2002, The Journal of Biological Chemistry.

[5]  Jingzhi Li,et al.  Crystal structure of E. coli Hsp100 ClpB nucleotide-binding domain 1 (NBD1) and mechanistic studies on ClpB ATPase activity. , 2002, Journal of molecular biology.

[6]  M. Zółkiewski,et al.  Stability and interactions of the amino‐terminal domain of ClpB from Escherichia coli , 2002, Protein science : a publication of the Protein Society.

[7]  S. Lindquist,et al.  Defining a pathway of communication from the C-terminal peptide binding domain to the N-terminal ATPase domain in a AAA protein. , 2002, Molecular cell.

[8]  A. Horwich,et al.  ClpS, a substrate modulator of the ClpAP machine. , 2002, Molecular cell.

[9]  Masasuke Yoshida,et al.  Roles of the Two ATP Binding Sites of ClpB from Thermus thermophilus * , 2002, The Journal of Biological Chemistry.

[10]  J. Wang,et al.  Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. , 2001, Structure.

[11]  A. Wilkinson,et al.  AAA+ superfamily ATPases: common structure–diverse function , 2001, Genes to cells : devoted to molecular & cellular mechanisms.

[12]  M. Baker,et al.  Bridging the information gap: computational tools for intermediate resolution structure interpretation. , 2001, Journal of molecular biology.

[13]  A. Steven,et al.  Translocation pathway of protein substrates in ClpAP protease , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J. Reinstein,et al.  The chaperone function of ClpB from Thermus thermophilus depends on allosteric interactions of its two ATP-binding sites. , 2001, Journal of molecular biology.

[15]  A. Clarke,et al.  The Truncated Form of the Bacterial Heat Shock Protein ClpB/HSP100 Contributes to Development of Thermotolerance in the Cyanobacterium Synechococcus sp. Strain PCC 7942 , 2000, Journal of bacteriology.

[16]  A. Steven,et al.  Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP. , 2000, Molecular cell.

[17]  M. Zółkiewski,et al.  Structure and Activity of ClpB from Escherichia coli , 2000, The Journal of Biological Chemistry.

[18]  C. Chung,et al.  Heptameric ring structure of the heat-shock protein ClpB, a protein-activated ATPase in Escherichia coli. , 2000, Journal of molecular biology.

[19]  B. Bukau,et al.  Size-dependent Disaggregation of Stable Protein Aggregates by the DnaK Chaperone Machinery* , 2000, The Journal of Biological Chemistry.

[20]  T. Baker,et al.  Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. , 2000, Molecular cell.

[21]  S. Rüdiger,et al.  Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB , 1999, The EMBO journal.

[22]  S. Gottesman,et al.  Posttranslational quality control: folding, refolding, and degrading proteins. , 1999, Science.

[23]  W Chiu,et al.  EMAN: semiautomated software for high-resolution single-particle reconstructions. , 1999, Journal of structural biology.

[24]  A. Zvi,et al.  Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Zółkiewski,et al.  ClpB Cooperates with DnaK, DnaJ, and GrpE in Suppressing Protein Aggregation , 1999, The Journal of Biological Chemistry.

[26]  A. Horwich,et al.  Global unfolding of a substrate protein by the Hsp100 chaperone ClpA , 1999, Nature.

[27]  M. Yohda,et al.  Heat-inactivated proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[28]  T. Baker,et al.  Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[29]  G J Kleywegt,et al.  Software for handling macromolecular envelopes. , 1999, Acta crystallographica. Section D, Biological crystallography.

[30]  E V Koonin,et al.  AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. , 1999, Genome research.

[31]  F P Booy,et al.  At sixes and sevens: characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease. , 1998, Journal of structural biology.

[32]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[33]  S. Lindquist,et al.  Hsp104, Hsp70, and Hsp40 A Novel Chaperone System that Rescues Previously Aggregated Proteins , 1998, Cell.

[34]  W. Kabsch,et al.  The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. , 1997, Science.

[35]  R M Esnouf,et al.  An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. , 1997, Journal of molecular graphics & modelling.

[36]  S. Lindquist,et al.  HSP100/Clp proteins: a common mechanism explains diverse functions. , 1996, Trends in biochemical sciences.

[37]  Susan Lindquist,et al.  Protein disaggregation mediated by heat-shock protein Hspl04 , 1994, Nature.

[38]  S. Lindquist,et al.  Saccharomyces cerevisiae Hsp104 protein. Purification and characterization of ATP-induced structural changes. , 1994, The Journal of biological chemistry.

[39]  K. Tanaka,et al.  Site-directed mutagenesis of the dual translational initiation sites of the clpB gene of Escherichia coli and characterization of its gene products. , 1993, The Journal of biological chemistry.

[40]  K. Struhl,et al.  The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α Helices: Crystal structure of the protein-DNA complex , 1992, Cell.

[41]  P. S. Kim,et al.  X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. , 1991, Science.

[42]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[43]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[44]  Susan M. Teare,et al.  At Sixes and Sevens , 1988 .

[45]  K. Sharp,et al.  Calculating the electrostatic potential of molecules in solution: Method and error assessment , 1988 .

[46]  J. Walker,et al.  Distantly related sequences in the alpha‐ and beta‐subunits of ATP synthase, myosin, kinases and other ATP‐requiring enzymes and a common nucleotide binding fold. , 1982, The EMBO journal.

[47]  William J. McEwen,et al.  Bridging the Information Gap , 1978 .

[48]  R. Vale Mini-Review AAA Proteins: Lords of the Ring , 2000 .

[49]  M. Kessel,et al.  Nucleotide‐dependent oligomerization of C1pB from Escherichia coli , 1999, Protein science : a publication of the Protein Society.

[50]  E A Merritt,et al.  Raster3D: photorealistic molecular graphics. , 1997, Methods in enzymology.

[51]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[52]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[53]  Y. Hatefi,et al.  Preparation and properties of complex V. , 1979, Methods in enzymology.