TIME-SERIES PHOTOMETRY OF STARS IN AND AROUND THE LAGOON NEBULA. I. ROTATION PERIODS OF 290 LOW-MASS PRE-MAIN-SEQUENCE STARS IN NGC 6530

We have conducted a long-term, wide-field, high-cadence photometric monitoring survey of ~50,000 stars in the Lagoon Nebula H II region. This first paper presents rotation periods for 290 low-mass stars in NGC 6530, the young cluster illuminating the nebula, and for which we assemble a catalog of infrared and spectroscopic disk indicators, estimated masses and ages, and X-ray luminosities. The distribution of rotation periods we measure is broadly uniform for 0.5 days < P < 10 days; the short-period cutoff corresponds to breakup. We observe no obvious bimodality in the period distribution, but we do find that stars with disk signatures rotate more slowly on average. The stars' X-ray luminosities are roughly flat with rotation period, at the saturation level (log LX /L bol ?3.3). However, we find a significant positive correlation between LX /L bol and corotation radius, suggesting that the observed X-ray luminosities are regulated by centrifugal stripping of the stellar coronae. The period-mass relationship in NGC 6530 is broadly similar to that of the Orion Nebula Cluster (ONC), but the slope of the relationship among the slowest rotators differs from that in the ONC and other young clusters. We show that the slope of the period-mass relationship for the slowest rotators can be used as a proxy for the age of a young cluster, and we argue that NGC 6530 may be slightly younger than the ONC, making it a particularly important touchstone for models of angular momentum evolution in young, low-mass stars.

[1]  H. C. Stempels,et al.  MML 53: a new low-mass, pre-main sequence eclipsing binary in the Upper Centaurus-Lupus region discovered by SuperWASP , 2010, 1008.4312.

[2]  R. Pudritz,et al.  The spin of accreting stars: dependence on magnetic coupling to the disc , 2004, astro-ph/0409701.

[3]  K. Stassun,et al.  Surprising dissimilarities in a newly formed pair of ‘identical twin’ stars , 2008, Nature.

[4]  Mario R. Perez,et al.  UvA-DARE ( Digital Academic Repository ) A multiwavelength study of star formation in the very young open cluster NGC 6530 , 1997 .

[5]  L. Hartmann,et al.  The distribution of rotational velocities for low-mass stars in the Pleiades , 1987 .

[6]  B. A. McLeod,et al.  Deep MMT Transit Survey of the Open Cluster M37. II. Variable Stars , 2007, 0709.3484.

[7]  G. Basri,et al.  The Classical T Tauri Spectroscopic Binary DQ Tau. II. Emission Line Variations with Orbital Phase. , 1997 .

[8]  K. Stassun,et al.  A Surprising Reversal of Temperatures in the Brown Dwarf Eclipsing Binary 2MASS J05352184–0546085 , 2007, 0704.3106.

[9]  S. Sciortino,et al.  The rich young cluster NGC 6530: a combined X-ray-optical-infrared study , 2006 .

[10]  Keivan G. StassunDonald Terndrup Angular Momentum Evolution of Young Stars: Toward a Synthesis of Observations, Theory, and Modeling , 2003, astro-ph/0303389.

[11]  D. James,et al.  X-ray emission from nearby M-dwarfs: the super-saturation phenomenon , 2000, astro-ph/0007159.

[12]  K. Stassun,et al.  NEAR-INFRARED LIGHT CURVES OF THE BROWN DWARF ECLIPSING BINARY 2MASS J05352184–0546085: CAN SPOTS EXPLAIN THE TEMPERATURE REVERSAL? , 2009, 0905.0491.

[13]  S. Roweis,et al.  ASTROMETRY.NET: BLIND ASTROMETRIC CALIBRATION OF ARBITRARY ASTRONOMICAL IMAGES , 2009, 0910.2233.

[14]  K. Stassun,et al.  HIGH-CADENCE TIME-SERIES PHOTOMETRY OF V1647 ORIONIS , 2011, 1108.5465.

[15]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[16]  Carl J. Grillmair,et al.  THE PALOMAR TRANSIENT FACTORY ORION PROJECT: ECLIPSING BINARIES AND YOUNG STELLAR OBJECTS , 2011, 1106.3570.

[17]  H. C. Stempels,et al.  The pre-main-sequence eclipsing binary ASAS J052821+0338.5 , 2008, 0801.3927.

[18]  Nathaniel R. Butler,et al.  PTF10nvg: AN OUTBURSTING CLASS I PROTOSTAR IN THE PELICAN/NORTH AMERICAN NEBULA , 2010, 1011.2565.

[19]  S. Vogel,et al.  Rotational velocities of pre-main-sequence stars. , 1981 .

[20]  E. Ostriker,et al.  Magnetocentrifugally Driven Flows from Young Stars and Disks. IV. The Accretion Funnel and Dead Zone , 1995 .

[21]  Keivan G. Stassun,et al.  The Rotation Period Distribution of Pre-Main-Sequence Stars in and around the Orion Nebula , 1999 .

[22]  S. Barnes Accepted for publication in The Astrophysical Journal Ages for illustrative field stars using gyrochronology: viability, limitations and errors , 2022 .

[23]  N. D. Rio,et al.  A MULTI-COLOR OPTICAL SURVEY OF THE ORION NEBULA CLUSTER. II. THE H-R DIAGRAM , 2010, 1008.1265.

[24]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[25]  Chile.,et al.  Pre‐main‐sequence stars in the Lagoon Nebula (M8)★ , 2006, astro-ph/0611150.

[26]  S. Sofia,et al.  Rotation Periods of Late-Type Stars in the Young Open Cluster IC 2602 , 1995, astro-ph/9812168.

[27]  W. Press,et al.  Fast algorithm for spectral analysis of unevenly sampled data , 1989 .

[28]  S. P. Littlefair,et al.  Empirical isochrones and relative ages for young stars, and the radiative–convective gap , 2006, astro-ph/0612090.

[29]  L. Hartmann,et al.  Rotational and radial velocities of T Tauri stars , 1986 .

[30]  K. Stassun,et al.  Periodic Accretion from a Circumbinary Disk in the Young Binary UZ Tau E , 2007, 0704.0307.

[31]  W. Herbst,et al.  Rotation periods for stars in NGC 2264. , 1997 .

[32]  Does Disk Locking Solve the Stellar Angular Momentum Problem , 2004, astro-ph/0403635.

[33]  Nicholas J. Wright,et al.  THE STELLAR-ACTIVITY–ROTATION RELATIONSHIP AND THE EVOLUTION OF STELLAR DYNAMOS , 2011, 1109.4634.

[34]  L. Rebull Rotation of Young Low-Mass Stars in the Orion Nebula Cluster Flanking Fields , 2001 .

[35]  K. Stassun,et al.  A 10 Micron Search for Truncated Disks Among Pre-Main-Sequence Stars with Photometric Rotation Periods , 2000, astro-ph/0010657.

[36]  R. Pudritz,et al.  Accretion-powered Stellar Winds. II. Numerical Solutions for Stellar Wind Torques , 2008, 0801.0436.

[37]  L. Cieza,et al.  Testing the Disk Regulation Paradigm with Spitzer Observations. I. Rotation Periods of Pre-Main-Sequence Stars in the IC 348 Cluster , 2006, astro-ph/0606127.

[38]  A. Iserles Numerical recipes in C—the art of scientific computing , by W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling. Pp 735. £27·50. 1988. ISBN 0-521-35465-X (Cambridge University Press) , 1989, The Mathematical Gazette.

[39]  K. Menten,et al.  The distance to the Orion Nebula , 2007, 0709.0485.

[40]  K. Stassun,et al.  A SEARCH FOR STAR–DISK INTERACTION AMONG THE STRONGEST X-RAY FLARING STARS IN THE ORION NEBULA CLUSTER , 2010, 1005.2128.

[41]  N. Pizzolato,et al.  The stellar activity-rotation relationship revisited: Dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs ? , 2003 .

[42]  Eric Stempels,et al.  Cool Stars, Stellar Systems and the Sun. , 2009 .

[43]  E. Feigelson,et al.  Bright X-Ray Flares in Orion Young Stars from COUP: Evidence for Star-Disk Magnetic Fields? , 2005, astro-ph/0506134.

[44]  C. Bailer-Jones,et al.  Rotational evolution of low mass stars: The case of NGC 2264 ? , 2005 .

[45]  K. Covey,et al.  SPECTRAL ENERGY DISTRIBUTIONS OF YOUNG STARS IN IC 348: THE ROLE OF DISKS IN ANGULAR MOMENTUM EVOLUTION OF YOUNG, LOW-MASS STARS , 2011, 1106.1468.

[46]  Coryn A. L. Bailer-Jones,et al.  Stellar rotation and variability in the Orion Nebula Cluster , 2002 .

[47]  W. Herbst,et al.  Rotation Periods of Stars in the Orion Nebula Cluster: The Bimodal Distribution , 1996 .

[48]  T. Naylor,et al.  Fitting the young main-sequence: distances, ages and age spreads , 2008, 0801.4085.

[49]  K. Stassun,et al.  HIGH-RESOLUTION SPECTROSCOPY DURING ECLIPSE OF THE YOUNG SUBSTELLAR ECLIPSING BINARY 2MASS 0535−0546. I. PRIMARY SPECTRUM: COOL SPOTS VERSUS OPACITY UNCERTAINTIES , 2010, 1008.2304.

[50]  A. K. Vivas,et al.  McNeil's Nebula in Orion: The outburst history , 2004, astro-ph/0404012.

[51]  W. Sherry,et al.  V1647 Orionis (IRAS 05436−0007) in Outburst: The First Three Months , 2004, astro-ph/0406618.

[52]  The XMM-Newton extended survey of the Taurus molecular cloud (XEST) , 2006, astro-ph/0609160.

[53]  Eric D. Feigelson,et al.  Magnetic Flaring in the Pre-Main-Sequence Sun and Implications for the Early Solar System , 2002 .

[54]  W. Herbst,et al.  Reflected light from sand grains in the terrestrial zone of a protoplanetary disk , 2008, Nature.

[55]  William Herbst,et al.  Catalogue of UBVRI photometry of T Tauri stars and analysis of the causes of their variability , 1994 .

[56]  MEMBERSHIP OF THE ORION NEBULA POPULATION FROM THE CHANDRA ORION ULTRADEEP PROJECT , 2005, astro-ph/0504370.

[57]  N. Lomb Least-squares frequency analysis of unequally spaced data , 1976 .

[58]  R. K. Honeycutt,et al.  CCD ENSEMBLE PHOTOMETRY ON AN INHOMOGENEOUS SET OF EXPOSURES , 1992 .

[59]  M. Pinsonneault,et al.  New Rotation Periods in the Pleiades: Interpreting Activity Indicators , 1997, astro-ph/9711284.

[60]  Keivan G. Stassun,et al.  Discovery of two young brown dwarfs in an eclipsing binary system , 2006, Nature.

[61]  G. Micela,et al.  A Deep Chandra X-Ray Observation of the Rich Young Cluster NGC 6530. I. The X-Ray Source Catalog and the Cluster Population , 2004 .

[62]  On the Rotational Evolution of Solar- and Late-Type Stars, Its Magnetic Origins, and the Possibility of Stellar Gyrochronology* , 2003, astro-ph/0303631.

[63]  W. Herbst,et al.  THE LIGHT CURVE OF THE WEAKLY ACCRETING T TAURI BINARY KH 15D FROM 2005–2010: INSIGHTS INTO THE NATURE OF ITS PROTOPLANETARY DISK , 2010, 1007.4212.

[64]  A. Koenigl Disk accretion onto magnetic T Tauri stars , 1991 .

[65]  F. Di Mille,et al.  The 1966-1967 Outburst of V1647 Orionis and the Appearance of McNeil’s Nebula , 2006 .

[66]  C. Aspin THE CONTINUING OUTBURST OF V1647 ORIONIS: WINTER/SPRING 2011 OBSERVATIONS , 2011, 1108.1504.

[67]  K. Covey,et al.  YSOVAR: SIX PRE-MAIN-SEQUENCE ECLIPSING BINARIES IN THE ORION NEBULA CLUSTER , 2012, 1206.6350.

[68]  M. Holman,et al.  The Orbit and Occultations of KH 15D , 2006, astro-ph/0602352.

[69]  W. Herbst,et al.  Additional Periodic Variables in NGC 2264 , 1998 .

[70]  C. Dougados,et al.  Time Dependent Magnetospheric Accretion in T Tauri Stars , 2004 .

[71]  L. Hillenbrand On the Stellar Population and Star-Forming History of the Orion Nebula Cluster , 1997 .

[72]  A Simultaneous Optical and X-Ray Variability Study of the Orion Nebula Cluster. I. Incidence of Time-correlated X-Ray/Optical Variations* , 2006, astro-ph/0606079.

[73]  K. Keil,et al.  Protostars and Planets V , 2007 .

[74]  W. Herbst,et al.  Rotation Periods of T Tauri Stars in the Orion Nebula Cluster: A Bimodal Frequency Distribution , 1992 .

[75]  K. Rice,et al.  Protostars and Planets V , 2005 .

[76]  C. Lada,et al.  Optical and millimeter-wave observations of the M8 region , 1976 .

[77]  The Monitor project: rotation of low-mass stars in the open cluster NGC 2547: Rotation of low-mass stars in NGC 2547 , 2007, 0711.0329.

[78]  M. Osorio,et al.  An Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds Luminosity Functions of Young Clusters: Modeling the Substellar Mass Regime Kinetic Temperatures in the Orion Bar , 2022 .

[79]  F. Özel,et al.  The relation between optical extinction and hydrogen column density in the Galaxy , 2009 .

[80]  E. Feigelson,et al.  X-RAY STAR CLUSTERS IN THE CARINA COMPLEX , 2011, 1103.0802.

[81]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[82]  K. Stassun,et al.  X-Ray Properties of Pre-Main-Sequence Stars in the Orion Nebula Cluster with Known Rotation Periods , 2004, astro-ph/0403159.

[83]  The star formation region NGC 6530: Distance, ages and initial mass function , 2004, astro-ph/0410066.

[84]  S. Barnes,et al.  ANGULAR MOMENTUM LOSS FROM COOL STARS: AN EMPIRICAL EXPRESSION AND CONNECTION TO STELLAR ACTIVITY , 2010, 1104.2350.

[85]  E. Feigelson,et al.  A Simultaneous Optical and X-Ray Variability Study of the Orion Nebula Cluster. II. A Common Origin in Magnetic Activity , 2007, astro-ph/0701735.

[86]  VLT/Flames observations of the star forming region NGC 6530 , 2006, astro-ph/0610901.

[87]  G. Lockwood,et al.  The activity, variability, and rotation of lower main-sequence Hyades stars , 1987 .

[88]  L. Hartmann,et al.  Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud , 1995 .

[89]  M. Bessell,et al.  UBVRI and Hα Photometry of the Young Open Cluster NGC 6530 , 2000 .

[90]  R. Pudritz,et al.  Accretion-powered Stellar Winds. III. Spin-Equilibrium Solutions , 2008, 0801.0440.

[91]  R. Makidon,et al.  Periodic Variability of Pre-Main-Sequence Stars in the NGC 2264 OB Association , 2004 .

[92]  E. Feigelson,et al.  Chandra Orion Ultradeep Project Census of X-Ray Stars in the BN-KL and OMC-1S Regions , 2005 .

[93]  K. Stassun,et al.  The Classical T Tauri Spectroscopic Binary DQ Tau.I.Orbital Elements and Light Curves , 1997 .

[94]  Keivan G. Stassun,et al.  Dynamical Mass Constraints on Low-Mass Pre-Main-Sequence Stellar Evolutionary Tracks: An Eclipsing Binary in Orion with a 1.0 M☉ Primary and a 0.7 M☉ Secondary , 2003, astro-ph/0312575.

[95]  S. Barnes A SIMPLE NONLINEAR MODEL FOR THE ROTATION OF MAIN-SEQUENCE COOL STARS. I. INTRODUCTION, IMPLICATIONS FOR GYROCHRONOLOGY, AND COLOR–PERIOD DIAGRAMS , 2010 .

[96]  K. Stassun,et al.  CIRCUMSTELLAR ENVIRONMENT AND EFFECTIVE TEMPERATURE OF THE YOUNG SUBSTELLAR ECLIPSING BINARY 2MASS J05352184−0546085 , 2009, 0903.1892.

[97]  R. D. Mathieu,et al.  Photometric variability in the old open cluster M 67 - II. General survey , 2001, astro-ph/0112189.

[98]  William H. Press,et al.  Numerical recipes in C , 2002 .

[99]  K. Stassun,et al.  Solar Flares and Coronal Mass Ejections: A Statistically Determined Flare Flux – CME Mass Correlation , 2010, 1011.0424.

[100]  S. Matt,et al.  Accretion-powered Stellar Winds as a Solution to the Stellar Angular Momentum Problem , 2005, astro-ph/0510060.

[101]  Nicholas B. Suntzeff,et al.  The Pre-Main-Sequence Eclipsing Binary TY Coronae Australis: Precise Stellar Dimensions and Tests of Evolutionary Models , 1998 .

[102]  B. Patten,et al.  The Evolution of Rotation and Activity in Young Open Clusters: IC 2391 , 1996 .

[103]  K. Zwintz,et al.  Seismology of Pre-Main-Sequence Stars in NGC 6530 , 2007 .

[104]  David R. Soderblom,et al.  The Ages of Stars , 2007, 1003.6074.

[105]  A Variability Study of Pre-Main-Sequence Stars in the Extremely Young Cluster IC 348 , 2000, astro-ph/0003307.

[106]  M. Irwin,et al.  The Monitor project: rotation of low‐mass stars in NGC 2362 – testing the disc regulation paradigm at 5 Myr , 2007, 0711.2398.

[107]  G. Lockwood,et al.  The activity, variability, and rotation of lower main-sequence members of the Coma star cluster , 1990 .

[108]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[109]  MAGNETIC ACCRETION AND PHOTOPOLARIMETRIC VARIABILITY IN CLASSICAL T TAURI STARS , 1998, astro-ph/9808267.