An Invitation to Sample Paths of Brownian Motion
暂无分享,去创建一个
[1] R. Durrett. Probability: Theory and Examples , 1993 .
[2] J. Christensen,et al. On sets of Haar measure zero in abelian polish groups , 1972 .
[3] Increase of Lévy processes , 1996 .
[4] R. M. Loynes,et al. Studies In The Theory Of Random Processes , 1966 .
[5] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[6] Krzysztof Burdzy,et al. On Nonincrease of Brownian Motion , 1990 .
[7] N. Wiener,et al. Notes on random functions , 1933 .
[8] Wendelin Werner,et al. Values of Brownian intersection exponents, II: Plane exponents , 2000, math/0003156.
[9] K. Burdzy. Cut Points on Brownian Paths , 1989 .
[10] R. Bass,et al. Cutting Brownian Paths , 1999 .
[11] R. Pemantle,et al. Martin capacity for Markov chains , 1995, math/0404054.
[12] A. Dvoretzky,et al. Nonincrease Everywhere of the Brownian Motion Process , 1961 .
[13] P. Levy. Processus stochastiques et mouvement brownien , 1948 .
[14] J. P. McKean. Hausdorff-Besicovitch dimension of Brownian motion paths , 1955 .
[15] C. Tricot. Two definitions of fractional dimension , 1982, Mathematical Proceedings of the Cambridge Philosophical Society.
[16] T. E. Harris. A lower bound for the critical probability in a certain percolation process , 1960, Mathematical Proceedings of the Cambridge Philosophical Society.
[17] E. Lehmann. Some Concepts of Dependence , 1966 .
[18] Frank E. Grubbs,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[19] E. Perkins,et al. Levels at which every Brownian excursion is exceptional , 1984 .
[20] Otto Frostman. Potentiel d'équilibre et capacité des ensembles : Avec quelques applications a la théorie des fonctions , 1935 .
[21] P. Bickel. Some contributions to the theory of order statistics , 1967 .
[22] L. Dubins. On a Theorem of Skorohod , 1968 .
[23] D. Freedman. Brownian motion and diffusion , 1971 .
[24] J. Bertoin. Increase of a lévy process with no positive jumps , 1991 .
[25] R. Daniel Mauldin,et al. Measure and dimension functions: measurability and densities , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.
[26] M. Urbanski,et al. On the Hausdorff dimension of some fractal sets , 1989 .
[27] D. H. Root. The Existence of Certain Stopping Times on Brownian Motion , 1969 .
[28] V. Strassen. An invariance principle for the law of the iterated logarithm , 1964 .
[29] Points of increase for random walks , 1996 .
[30] S. Orey,et al. How Often on a Brownian Path Does the Law of Iterated Logarithm Fail , 1974 .
[31] R. Bass. Probabilistic Techniques in Analysis , 1994 .
[32] D. R. Fulkerson,et al. Maximal Flow Through a Network , 1956 .
[33] Stephen Taylor. The Hausdorff α-dimensional measure of Brownian paths in n-space , 1953, Mathematical Proceedings of the Cambridge Philosophical Society.
[34] Claude Tricot,et al. Rectifiable and fractal sets , 1991 .
[35] G. A. Hunt. SOME THEOREMS CONCERNING BROWNIAN MOTION , 1956 .
[36] James A. Yorke,et al. Prevalence: an addendum , 1993 .
[37] Dudley,et al. Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .
[38] Kenneth Falconer,et al. Fractal Geometry: Mathematical Foundations and Applications , 1990 .
[39] K. Falconer,et al. Projection theorems for box and packing dimensions , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.
[40] Donald R. Woods,et al. Notes on Introductory Combinatorics. , 1986 .
[41] S. Berman. Nonincrease almost everywhere of certain measurable functions with applications to stochastic processes , 1983 .
[42] Yuval Peres,et al. Tree-indexed random walks on groups and first passage percolation , 1994 .
[43] B. Hunt. Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces , 1992, math/9210220.
[44] Two . dimensional Brownian Motion and Harmonic Functions , 2022 .
[45] Edwin Hewitt,et al. Real And Abstract Analysis , 1967 .
[46] G. Lawler,et al. Non-intersection exponents for Brownian paths , 1990 .
[47] F. Knight. Essentials of Brownian Motion and Diffusion , 1981 .