Using ALMA to resolve the nature of the early star-forming large-scale structure PLCK G073.4−57.5

Galaxy clusters at high redshift are key targets for understanding matter assembly in the early Universe, yet they are challenging to locate. A sample of more than 2000 high-z candidate structures has been found using Planck’s all-sky submillimetre maps, and a sub-set of 234 have been followed up with Herschel-SPIRE, which showed that the emission can be attributed to large overdensities of dusty star-forming galaxies. As a next step, we need to resolve and characterise the individual galaxies giving rise to the emission seen by Planck and Herschel, and to find out whether they constitute the progenitors of present-day, massive galaxy clusters. Thus, we targeted the eight brightest Herschel-SPIRE sources in the centre of the Planck peak PLCK G073.4−57.5 using ALMA at 1.3 mm, and complemented these observations with multi-wavelength data from Spitzer-IRAC, CFHT-WIRCam in the J and Ks bands, and JCMT’s SCUBA-2 instrument. We detected a total of 18 millimetre galaxies brighter than 0.3 mJy within the 2.4 arcmin2 ALMA pointings, corresponding to an ALMA source density 8–30 times higher than average background estimates and larger than seen in typical “proto-cluster” fields. We were able to match all but one of the ALMA sources to a near infrared (NIR) counterpart. The four most significant SCUBA-2 sources are not included in the ALMA pointings, but we find an 8σ stacking detection of the ALMA sources in the SCUBA-2 map at 850 μm. We derive photometric redshifts, infrared (IR) luminosities, star-formation rates (SFRs), stellar masses (ℳ), dust temperatures, and dust masses for all of the ALMA galaxies. Photometric redshifts identify two groups each of five sources, concentrated around z  ≃  1.5 and 2.4. The two groups show two “red sequences”, that is similar near-IR [3.6]  −  [4.5] colours and different J  −  Ks colours. The majority of the ALMA-detected galaxies are on the SFR versus ℳ main sequence (MS), and half of the sample is more massive than the characteristic ℳ* at the corresponding redshift. We find that the z  ≃  1.5 group has total SFR = 840−100+120 M⊙ yr−1 and ℳ = 5.8−2.4+1.7 × 1011 M⊙, and that the z  ≃  2.4 group has SFR = 1020−170+310 M⊙ yr−1 and ℳ = 4.2−2.1+1.5 × 1011 M⊙, but the latter group is more scattered in stellar mass and around the MS. Serendipitous CO line detections in two of the galaxies appear to match their photometric redshifts at z  =  1.54. We performed an analysis of star-formation efficiencies (SFEs) and CO- and mm-continuum-derived gas fractions of our ALMA sources, combined with a sample of 1 <  z <  3 cluster and proto-cluster members, and observed trends in both quantities with respect to stellar masses and in comparison to field galaxies.

[1]  R. B. Barreiro,et al.  Planck2018 results , 2020, Astronomy & Astrophysics.

[2]  C. Benoist,et al.  Molecular gas in radio galaxies in dense megaparsec-scale environments at z = 0.4–2.6 , 2018, Astronomy & Astrophysics.

[3]  A. Omont,et al.  Planck’s Dusty GEMS , 2018, Astronomy & Astrophysics.

[4]  D. Elbaz,et al.  Revealing the Environmental Dependence of Molecular Gas Content in a Distant X-Ray Cluster at z = 2.51 , 2018, The Astrophysical Journal.

[5]  S. Perlmutter,et al.  The Evolution of Environmental Quenching Timescales to z ∼ 1.6: Evidence for Dynamically Driven Quenching of the Cluster Galaxy Population , 2018, The Astrophysical Journal.

[6]  B. Altieri,et al.  Spitzer Planck Herschel Infrared Cluster (SPHerIC) survey: Candidate galaxy clusters at 1.3 < z < 3 selected by high star-formation rate , 2018, Astronomy & Astrophysics.

[7]  G. Cresci,et al.  Molecular gas content in obscured AGN at z > 1 , 2018, Astronomy & Astrophysics.

[8]  S. Andreon,et al.  Molecular gas in two companion cluster galaxies at z = 1.2 (Corrigendum) , 2018, Astronomy & Astrophysics.

[9]  A. Cimatti,et al.  Merger-driven star formation activity in Cl J1449+0856 at z = 1.99 as seen by ALMA and JVLA , 2018, 1805.09789.

[10]  P. Martini,et al.  The Fraction of Active Galactic Nuclei in the USS 1558–003 Protocluster at z = 2.53 , 2018, The Astrophysical Journal.

[11]  V. Wild,et al.  The enhancement of rapidly quenched galaxies in distant clusters at 0.5 < z < 1.0 , 2018, 1802.01593.

[12]  L. Wang,et al.  Candidate high-z protoclusters among the Planck compact sources, as revealed by Herschel-SPIRE , 2017, 1712.07141.

[13]  R. Bouwens,et al.  The ALMA Frontier Fields Survey , 2017, Astronomy & Astrophysics.

[14]  C. Willmer,et al.  Deep CO(1–0) Observations of z = 1.62 Cluster Galaxies with Substantial Molecular Gas Reservoirs and Normal Star Formation Efficiencies , 2017, 1709.06963.

[15]  S. Maddox,et al.  An Extreme Protocluster of Luminous Dusty Starbursts in the Early Universe , 2017, The Astrophysical Journal.

[16]  D. Hughes,et al.  Detection of a Substantial Molecular Gas Reservoir in a Brightest Cluster Galaxy at z = 1.7 , 2017, 1706.01366.

[17]  L. Montier,et al.  On the statistics of proto-cluster candidates detected in the Planck all-sky survey , 2017, 1706.00116.

[18]  G. Wilson,et al.  A Radio-to-mm Census of Star-forming Galaxies in Protocluster 4C23.56 at Z = 2.5: Gas Mass and Its Fraction Revealed with ALMA , 2017, 1705.10330.

[19]  W. Hartley,et al.  Enhancement of AGN in a protocluster at z=1.6 , 2017, 1705.10799.

[20]  I. Smail,et al.  ALMA Pinpoints a Strong Overdensity of U/LIRGs in the Massive Cluster XCS J2215 at z = 1.46 , 2017, 1705.03479.

[21]  E. Gawiser,et al.  An ALMA Survey of Submillimeter Galaxies in the Extended Chandra Deep Field South: Spectroscopic Redshifts , 2017 .

[22]  S. Perlmutter,et al.  ALMA Observations of Gas-rich Galaxies in z ∼ 1.6 Galaxy Clusters: Evidence for Higher Gas Fractions in High-density Environments , 2017, 1705.03062.

[23]  K. Kohno,et al.  Evolutionary Phases of Gas-rich Galaxies in a Galaxy Cluster at z = 1.46 , 2017, 1705.02567.

[24]  P. Capak,et al.  Near-infrared MOSFIRE Spectra of Dusty Star-forming Galaxies at 0.2 < z < 4 , 2017, 1703.10168.

[25]  G. Lagache,et al.  The impact of clustering and angular resolution on far-infrared and millimeter continuum observations , 2017, 1703.08795.

[26]  M. Limousin,et al.  Planck’s dusty GEMS - III. A massive lensing galaxy with a bottom-heavy stellar initial mass function at z = 1.5 , 2017, 1703.02984.

[27]  D. Clements,et al.  SCUBA-2 follow-up of Herschel-SPIRE observed Planck overdensities , 2017, 1703.02074.

[28]  B. Weiner,et al.  PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions , 2017, 1702.01140.

[29]  B. Altieri,et al.  The implications of the surprising existence of a large, massive CO disk in a distant protocluster , 2017, 1701.05250.

[30]  O. Fèvre,et al.  The COSMOS2015 galaxy stellar mass function . Thirteen billion years of stellar mass assembly in ten snapshots , 2017, 1701.02734.

[31]  W. M. Wood-Vasey,et al.  The Pan-STARRS1 Surveys , 2016, 1612.05560.

[32]  I. Smail,et al.  ALMA Deep Field in SSA22: Source Catalog and Number Counts , 2016, 1611.09857.

[33]  R. Overzier The realm of the galaxy protoclusters , 2016, 1610.05201.

[34]  R. Somerville,et al.  The dust content of galaxies from z = 0 to z = 9 , 2016, 1609.08622.

[35]  S. Malhotra,et al.  Planck’s Dusty GEMS - II. Extended [CII] emission and absorption in the Garnet at z = 3.4 seen with ALMA , 2016, 1610.01169.

[36]  R. Bouwens,et al.  The ALMA Frontier Fields Survey. I. 1.1 mm continuum detections in Abell 2744, MACS J0416.1-2403 and MACS J1149.5+2223 , 2016, 1607.03808.

[37]  T. Henning,et al.  A Herschel-SPIRE survey of the Mon R2 giant molecular cloud: analysis of the gas column density probability density function , 2016, 1606.01752.

[38]  V. A. Bruce,et al.  A deep ALMA image of the Hubble Ultra Deep Field , 2016, 1606.00227.

[39]  S. Maddox,et al.  H-ATLAS: A Candidate High Redshift Cluster/Protocluster of Star-Forming Galaxies , 2016, 1605.06433.

[40]  C. Casey THE UBIQUITY OF COEVAL STARBURSTS IN MASSIVE GALAXY CLUSTER PROGENITORS , 2016, 1603.04437.

[41]  C. Conselice,et al.  The structure and evolution of a forming galaxy cluster at z = 1.62 , 2016, 1603.03774.

[42]  J. Dunlop,et al.  SXDF-ALMA 2-arcmin2 deep survey: 1.1-mm number counts , 2016, 1602.08167.

[43]  O. Ilbert,et al.  ISM MASSES AND THE STAR FORMATION LAW AT Z = 1 TO 6: ALMA OBSERVATIONS OF DUST CONTINUUM IN 145 GALAXIES IN THE COSMOS SURVEY FIELD , 2015, 1511.05149.

[44]  I. Smail,et al.  ALMA DEEP FIELD IN SSA22: A CONCENTRATION OF DUSTY STARBURSTS IN A z = 3.09 PROTOCLUSTER CORE , 2015, 1510.08861.

[45]  R. Pelló,et al.  Multi-wavelength characterisation of z~2 clustered, dusty star forming galaxies discovered by Planck , 2015, 1510.01585.

[46]  P. Hopkins,et al.  The formation of submillimetre-bright galaxies from gas infall over a billion years , 2015, Nature.

[47]  B. Altieri,et al.  Planck’s dusty GEMS: The brightest gravitationally lensed galaxies discovered with the Planck all-sky survey , 2015 .

[48]  M. Zwaan,et al.  ALMACAL I: FIRST DUAL-BAND NUMBER COUNTS FROM A DEEP AND WIDE ALMA SUBMILLIMETER SURVEY, FREE FROM COSMIC VARIANCE , 2015, 1508.05099.

[49]  G. W. Pratt,et al.  Planck intermediate results - XXXIX. The Planck list of high-redshift source candidates , 2015, 1508.04171.

[50]  P. Capak,et al.  A MASSIVE, DISTANT PROTO-CLUSTER AT z = 2.47 CAUGHT IN A PHASE OF RAPID FORMATION? , 2015, 1506.01715.

[51]  Yoshiaki Ono,et al.  ALMA CENSUS OF FAINT 1.2 mm SOURCES DOWN TO ∼ 0.02 mJy: EXTRAGALACTIC BACKGROUND LIGHT AND DUST-POOR, HIGH-z GALAXIES , 2015, 1505.03523.

[52]  R. B. Barreiro,et al.  Planck intermediate results XXVII. High-redshift infrared galaxy overdensity candidates and lensed sources discovered by Planck and confirmed by Herschel-SPIRE , 2015, 1503.08773.

[53]  A. Fontana,et al.  ALMA constraints on the faint millimetre source number counts and their contribution to the cosmic infrared background , 2015, 1502.00640.

[54]  D. Elbaz,et al.  CO excitation of normal star forming galaxies out to $z=1.5$ as regulated by the properties of their interstellar medium , 2014, 1409.8158.

[55]  B. Weiner,et al.  COMBINED CO AND DUST SCALING RELATIONS OF DEPLETION TIME AND MOLECULAR GAS FRACTIONS WITH COSMIC TIME, SPECIFIC STAR-FORMATION RATE, AND STELLAR MASS , 2014, 1409.1171.

[56]  J. Silverman,et al.  A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING “MAIN SEQUENCE” FROM z ∼ 0–6 , 2014, 1405.2041.

[57]  J. Vieira,et al.  Herschel Multitiered Extragalactic Survey: clusters of dusty galaxies uncovered by Herschel and Planck , 2014 .

[58]  J. Bartlett,et al.  CANDIDATE CLUSTERS OF GALAXIES AT z > 1.3 IDENTIFIED IN THE SPITZER SOUTH POLE TELESCOPE DEEP FIELD SURVEY , 2014, 1404.0023.

[59]  M. Ouchi,et al.  FAINT SUBMILLIMETER GALAXIES REVEALED BY MULTIFIELD DEEP ALMA OBSERVATIONS: NUMBER COUNTS, SPATIAL CLUSTERING, AND A DARK SUBMILLIMETER LINE EMITTER , 2014, 1403.4360.

[60]  Ichi Tanaka,et al.  EVIDENCE FOR A GAS-RICH MAJOR MERGER IN A PROTO-CLUSTER AT z = 2.5 , 2014, 1403.0040.

[61]  K. Sheth,et al.  THE EVOLUTION OF INTERSTELLAR MEDIUM MASS PROBED BY DUST EMISSION: ALMA OBSERVATIONS AT z = 0.3–2 , 2014, The Astrophysical Journal.

[62]  G. J. Bendo,et al.  Gas-to-dust mass ratios in local galaxies over a 2 dex metallicity range , 2013, 1312.3442.

[63]  A. Cimatti,et al.  The evolution of the dust temperatures of galaxies in the SFR–M∗ plane up to z ~ 2 , 2013, 1311.2956.

[64]  Edinburgh,et al.  An ALMA survey of sub-millimetre Galaxies in the Extended Chandra Deep Field South: the far-infrared properties of SMGs , 2013, 1310.6362.

[65]  A. Grazian,et al.  DISCOVERY OF A QUADRUPLE LENS IN CANDELS WITH A RECORD LENS REDSHIFT z = 1.53 , 2013, 1309.2826.

[66]  O. Paris,et al.  A gas-rich AGN near the centre of a galaxy cluster at z ~ 1.4 , 2013, 1307.4576.

[67]  Gildas Team,et al.  GILDAS: Grenoble Image and Line Data Analysis Software , 2013 .

[68]  K. Ohta,et al.  FAINT END OF 1.3 mm NUMBER COUNTS REVEALED BY ALMA , 2013, 1304.6437.

[69]  G. W. Pratt,et al.  Planck 2013 results. XVIII. The gravitational lensing-infrared background correlation , 2013, 1303.5078.

[70]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[71]  D. Elbaz,et al.  REGULARITY UNDERLYING COMPLEXITY: A REDSHIFT-INDEPENDENT DESCRIPTION OF THE CONTINUOUS VARIATION OF GALAXY-SCALE MOLECULAR GAS PROPERTIES IN THE MASS-STAR FORMATION RATE PLANE , 2013, 1303.4392.

[72]  J. Dunlop,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTIONS OF STAR-FORMING AND QUIESCENT GALAXIES TO z = 4 FROM THE COSMOS/UltraVISTA SURVEY , 2013, 1303.4409.

[73]  S. Meyer,et al.  Dusty starburst galaxies in the early Universe as revealed by gravitational lensing , 2013, Nature.

[74]  D. L. Clements,et al.  HERSCHEL-ATLAS: A BINARY HyLIRG PINPOINTING A CLUSTER OF STARBURSTING PROTOELLIPTICALS , 2013, 1302.4436.

[75]  Marseille,et al.  Characterization of Scuba-2 450 μm and 850 μm selected galaxies in the COSMOS field , 2013, 1302.2619.

[76]  A. M. Swinbank,et al.  CONCURRENT SUPERMASSIVE BLACK HOLE AND GALAXY GROWTH: LINKING ENVIRONMENT AND NUCLEAR ACTIVITY IN z = 2.23 Hα EMITTERS , 2013, 1301.3922.

[77]  A. Bolatto,et al.  The CO-to-H2 Conversion Factor , 2013, 1301.3498.

[78]  F. Walter,et al.  Cool Gas in High-Redshift Galaxies , 2013, 1301.0371.

[79]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[80]  A. Finoguenov,et al.  Deep observations of CO line emission from star-forming galaxies in a cluster candidate at z = 1.5 , 2012, 1207.2795.

[81]  M. Hayashi,et al.  A STARBURSTING PROTO-CLUSTER IN MAKING ASSOCIATED WITH A RADIO GALAXY AT z = 2.53 DISCOVERED BY Hα IMAGING , 2012, 1207.2614.

[82]  C. Casey Far-infrared spectral energy distribution fitting for galaxies near and far , 2012, 1206.1595.

[83]  A. M. Swinbank,et al.  A survey of molecular gas in luminous sub-millimetre galaxies , 2012, 1205.1511.

[84]  S. Maddox,et al.  Herschel-ATLAS: Planck sources in the phase 1 fields , 2012, 1204.3917.

[85]  J. Wagg,et al.  CO J = 2–1 LINE EMISSION IN CLUSTER GALAXIES AT z ∼ 1: FUELING STAR FORMATION IN DENSE ENVIRONMENTS , 2012, 1204.3897.

[86]  B. Lazareff,et al.  The EMIR multi-band mm-wave receiver for the IRAM 30-m telescope , 2012 .

[87]  B. Groves,et al.  HERSCHEL FAR-INFRARED AND SUBMILLIMETER PHOTOMETRY FOR THE KINGFISH SAMPLE OF NEARBY GALAXIES , 2011, 1112.1093.

[88]  A. Cimatti,et al.  THE LESSER ROLE OF STARBURSTS IN STAR FORMATION AT z = 2 , 2011, 1108.0933.

[89]  D. Calzetti,et al.  GOODS–Herschel: an infrared main sequence for star-forming galaxies , 2011, 1105.2537.

[90]  V. Villar,et al.  UV-TO-FIR ANALYSIS OF SPITZER/IRAC SOURCES IN THE EXTENDED GROTH STRIP. II. PHOTOMETRIC REDSHIFTS, STELLAR MASSES, AND STAR FORMATION RATES , 2011, 1102.4335.

[91]  E. L. Wright,et al.  PRELIMINARY RESULTS FROM NEOWISE: AN ENHANCEMENT TO THE WIDE-FIELD INFRARED SURVEY EXPLORER FOR SOLAR SYSTEM SCIENCE , 2011, 1102.1996.

[92]  M. Salvato,et al.  A massive protocluster of galaxies at a redshift of z ≈ 5.3 , 2011, Nature.

[93]  B. Draine Physics of the Interstellar and Intergalactic Medium , 2011 .

[94]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[95]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[96]  D. Elbaz,et al.  HerMES: The SPIRE confusion limit , 2010, 1005.2207.

[97]  A. Georgakakis,et al.  Excess AGN activity in the z= 2.30 Protocluster in HS 1700+64 , 2010, 1005.1833.

[98]  A. Cimatti,et al.  The far-infrared/radio correlation as probed by Herschel , 2010, 1005.1072.

[99]  D. Clements,et al.  The submillimetre properties of ultraluminous infrared galaxies , 2009, 0911.3593.

[100]  Cambridge,et al.  The properties of submm galaxies in hierarchical models , 2008, Monthly Notices of the Royal Astronomical Society.

[101]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[102]  C. Papovich The Angular Clustering of Distant Galaxy Clusters , 2007, 0712.1819.

[103]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-Ray Selected Active Galactic Nuclei in the XMM-Newton Medium Deep Survey , 2007 .

[104]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-ray selected AGNs in the XMDS Survey , 2007, astro-ph/0703255.

[105]  E. Gawiser,et al.  Systematic Uncertainties in Stellar Mass Estimation for Distinct Galaxy Populations , 2007, astro-ph/0701749.

[106]  Caltech,et al.  The Infrared Array Camera Component of the Spitzer Space Telescope Extragalactic First Look Survey , 2005, astro-ph/0507143.

[107]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[108]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[109]  P. P. van der Werf,et al.  A Significant Population of Red, Near-Infrared-selected High-Redshift Galaxies , 2003, astro-ph/0303163.

[110]  Marcin Sawicki,et al.  The 1.6 Micron Bump as a Photometric Redshift Indicator , 2002, astro-ph/0209437.

[111]  G. Lewis,et al.  Submillimeter Imaging of a Protocluster Region at z = 3.09 , 2000, astro-ph/0010101.

[112]  J. Bond,et al.  The Canada-United Kingdom Deep Submillimeter Survey. II. First Identifications, Redshifts, and Implications for Galaxy Evolution , 1999, astro-ph/9901047.

[113]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[114]  E. Hivon,et al.  The optically dark side of galaxy formation , 1997, Nature.

[115]  Simon J. E. Radford,et al.  The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies , 1996, astro-ph/9610166.

[116]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[117]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[118]  G. Neugebauer,et al.  Ultraluminous infrared galaxies and the origin of quasars , 1988 .

[119]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XXVII . The second Planck catalogue of Sunyaev-Zeldovich sources , 2016 .

[120]  R. B. Barreiro,et al.  Planck early results Special feature Planck early results . XXI . Properties of the interstellar medium in the Galactic plane , 2011 .

[121]  I. Smail,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 CLUSTERING OF SUBMILLIMETER-SELECTED GALAXIES , 2004 .