Micro-material handling, employing e-beam coatings of copper and silver

Van der Waals forces and other adhesive forces impose great challenges on micro-material handling. Mechanical grippers fail to release micro-parts reliably because of them. This paper explores how the problematic Van der Waals forces may be used for micro-material handling purposes using surface roughnesses generated by e-beam coatings of copper and silver on silicon. An atomic force microscope, model Asylum MFP 3 D-Bio with version 6.22A software, was used to measure the forces exerted by the surfaces. A silver coating of 1.41 nm rms surface roughness value is found to exert the highest Van der Waals force, followed by a copper coating of 2.72 nm rms; a copper coating of 217 nm rms exerts the least force. This implies that, in a reliable micro-material handling system, these coatings are suitable for the interactive surfaces of the placement position, micro-gripper, and the pick-up position respectively. OPSOMMING Van der Waalskragte en ander bindingskragte hou steeds groot uitdagings in vir mikromateriaalhantering. As gevolg van hierdie bindingskragte stel meganiese gryptoerusting nie die mikro-partikels vry nie. Hierdie artikel ondersoek hoe die Van der Waalskragte gebruik kan word vir die mikro-materiaalhanteringsproses deur die gebruik van oppervlakgrofheid gegenereer deur ’n e-straal-laagbedekking van koper en silwer op silikon. ’n Atoomkrag mikroskoop, model Asylum MFP 3 D-Bio met weergawe 6.22A programmatuur, is gebruik om die kragte deur die oppervlakke uitgeoefen te meet. Daar is gevind dat ’n silwer laagbedekking met ’n oppervlakgrofheid van 1.41nm wortel-gemiddelde-kwadraat (wgk) die hoogste Van der Waalskrag uitoefen, gevolg deur ’n koper laagbedekking met ’n oppervlakgrofheid van 2.72nm wgk; ’n koper laagbedekking met ’n grofheid van 217nm wgk het die kleinste krag uitgeoefen. Dit impliseer dat, vir ’n betroubare mikro-materiaalhanteringsisteem, hierdie laagbedekkings geskik is vir die interaktiewe oppervlakke van die plasingsposisie, die mikro-gryper en die optelposisie. a a a a a a a a a a

[1]  Stephen Matope,et al.  MICRO-MATERIAL HANDLING EMPLOYING E-BEAM GENERATED TOPOGRAPHIES OF COPPER AND ALUMINIUM , 2011 .

[2]  V. Adrian Parsegian,et al.  Van Der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists , 2005 .

[3]  Kenneth Y. Goldberg,et al.  Parallel microassembly with electrostatic force fields , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[4]  K. Komvopoulos Surface engineering and microtribology for microelectromechanical systems , 1996 .

[5]  J. Israelachvili Intermolecular and surface forces , 1985 .

[6]  Singh,et al.  Adhesion between Nanoscale Rough Surfaces. , 2000, Journal of colloid and interface science.

[7]  Victor Rudolph,et al.  London-van der Waals adhesiveness of rough particles , 2006 .

[8]  Walz,et al.  Direct Measurement of the Effect of Surface Roughness on the Colloidal Forces between a Particle and Flat Plate. , 1997, Journal of colloid and interface science.

[9]  Anne Gelb,et al.  Roughness models for particle adhesion. , 2004, Journal of colloid and interface science.

[10]  Ronald S. Fearing,et al.  Survey of sticking effects for micro parts handling , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.