Van der Waals forces and other adhesive forces impose great challenges on micro-material handling. Mechanical grippers fail to release micro-parts reliably because of them. This paper explores how the problematic Van der Waals forces may be used for micro-material handling purposes using surface roughnesses generated by e-beam coatings of copper and silver on silicon. An atomic force microscope, model Asylum MFP 3 D-Bio with version 6.22A software, was used to measure the forces exerted by the surfaces. A silver coating of 1.41 nm rms surface roughness value is found to exert the highest Van der Waals force, followed by a copper coating of 2.72 nm rms; a copper coating of 217 nm rms exerts the least force. This implies that, in a reliable micro-material handling system, these coatings are suitable for the interactive surfaces of the placement position, micro-gripper, and the pick-up position respectively. OPSOMMING Van der Waalskragte en ander bindingskragte hou steeds groot uitdagings in vir mikromateriaalhantering. As gevolg van hierdie bindingskragte stel meganiese gryptoerusting nie die mikro-partikels vry nie. Hierdie artikel ondersoek hoe die Van der Waalskragte gebruik kan word vir die mikro-materiaalhanteringsproses deur die gebruik van oppervlakgrofheid gegenereer deur ’n e-straal-laagbedekking van koper en silwer op silikon. ’n Atoomkrag mikroskoop, model Asylum MFP 3 D-Bio met weergawe 6.22A programmatuur, is gebruik om die kragte deur die oppervlakke uitgeoefen te meet. Daar is gevind dat ’n silwer laagbedekking met ’n oppervlakgrofheid van 1.41nm wortel-gemiddelde-kwadraat (wgk) die hoogste Van der Waalskrag uitoefen, gevolg deur ’n koper laagbedekking met ’n oppervlakgrofheid van 2.72nm wgk; ’n koper laagbedekking met ’n grofheid van 217nm wgk het die kleinste krag uitgeoefen. Dit impliseer dat, vir ’n betroubare mikro-materiaalhanteringsisteem, hierdie laagbedekkings geskik is vir die interaktiewe oppervlakke van die plasingsposisie, die mikro-gryper en die optelposisie. a a a a a a a a a a
[1]
Stephen Matope,et al.
MICRO-MATERIAL HANDLING EMPLOYING E-BEAM GENERATED TOPOGRAPHIES OF COPPER AND ALUMINIUM
,
2011
.
[2]
V. Adrian Parsegian,et al.
Van Der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists
,
2005
.
[3]
Kenneth Y. Goldberg,et al.
Parallel microassembly with electrostatic force fields
,
1998,
Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).
[4]
K. Komvopoulos.
Surface engineering and microtribology for microelectromechanical systems
,
1996
.
[5]
J. Israelachvili.
Intermolecular and surface forces
,
1985
.
[6]
Singh,et al.
Adhesion between Nanoscale Rough Surfaces.
,
2000,
Journal of colloid and interface science.
[7]
Victor Rudolph,et al.
London-van der Waals adhesiveness of rough particles
,
2006
.
[8]
Walz,et al.
Direct Measurement of the Effect of Surface Roughness on the Colloidal Forces between a Particle and Flat Plate.
,
1997,
Journal of colloid and interface science.
[9]
Anne Gelb,et al.
Roughness models for particle adhesion.
,
2004,
Journal of colloid and interface science.
[10]
Ronald S. Fearing,et al.
Survey of sticking effects for micro parts handling
,
1995,
Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.