Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases

[1]  A. R. Stokes,et al.  The diffraction of X rays by distorted crystal aggregates - I , 1944 .

[2]  G. K. Williamson,et al.  X-ray line broadening from filed aluminium and wolfram , 1953 .

[3]  R. Fleischer,et al.  Substitutional solution hardening , 1963 .

[4]  L. Remy,et al.  Twinning and strain-induced f.c.c. → h.c.p. transformation on the mechanical properties of CoNiCrMo alloys , 1976 .

[5]  E. .. Mittemeijer,et al.  Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis , 1982 .

[6]  A. Sachdev Effect of retained austenite on the yielding and deformation behavior of a dual phase steel , 1983 .

[7]  S. Kalidindi,et al.  Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fcc alloys that form deformation twins , 1997 .

[8]  Lynne B. McCusker,et al.  Rietveld refinement guidelines , 1999 .

[9]  Minoru Umemoto,et al.  Tensile stress-strain analysis of single-structure steels , 2000 .

[10]  K. Vecchio,et al.  The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery , 2001 .

[11]  R. Reed,et al.  The precipitation of topologically close-packed phases in rhenium-containing superalloys , 2001 .

[12]  S. Kalidindi,et al.  Strain hardening regimes and microstructure evolution during large strain compression of high purity titanium , 2002 .

[13]  L. Höglund,et al.  Thermo-Calc & DICTRA, computational tools for materials science , 2002 .

[14]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[15]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[16]  J. Vogt,et al.  Empirical model predicting the value of the strain-hardening exponent of a Ti-IF steel grade , 2006 .

[17]  Shou-Yi Chang,et al.  Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements , 2007 .

[18]  S. K. Kim,et al.  Orientation dependence of twinning and strain hardening behaviour of a high manganese twinning induced plasticity steel with polycrystalline structure , 2011 .

[19]  John C. Horwath,et al.  Absence of long-range chemical ordering in equimolar FeCoCrNi , 2012 .

[20]  D. Wang,et al.  Determination of the maximum strain–hardening exponent , 2012 .

[21]  Bjørn Clausen,et al.  Neutron-diffraction study and modeling of the lattice parameters of a NiAl-precipitate-strengthened Fe-based alloy , 2012 .

[22]  Mark Asta,et al.  New design aspects of creep-resistant NiAl-strengthened ferritic alloys , 2013 .

[23]  Douglas L. Irving,et al.  Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy , 2013 .

[24]  T. Shun,et al.  Age-hardening of the CoCrFeNiMo0.85 high-entropy alloy , 2013 .

[25]  J. Yeh,et al.  Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys , 2013 .

[26]  G. Eggeler,et al.  The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy , 2013 .

[27]  T. G. Nieh,et al.  Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy , 2013 .

[28]  T. Nieh,et al.  In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy , 2014 .

[29]  Wei Zhang,et al.  High-Entropy Alloys with a Hexagonal Close-Packed Structure Designed by Equi-Atomic Alloy Strategy and Binary Phase Diagrams , 2014 .

[30]  Oleg N. Senkov,et al.  Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys , 2014 .

[31]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[32]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[33]  R. Spolenak,et al.  Ultrastrong ductile and stable high-entropy alloys at small scales , 2015, Nature Communications.

[34]  P. Liaw,et al.  High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy , 2015 .

[35]  Jonathan D. Miller,et al.  Accelerated exploration of multi-principal element alloys for structural applications , 2015 .

[36]  Reinhard Pippan,et al.  Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation , 2015 .

[37]  C. Woodward,et al.  Accelerated exploration of multi-principal element alloys with solid solution phases , 2015, Nature Communications.

[38]  Douglas L. Irving,et al.  A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures , 2015 .

[39]  Yunhao Huang,et al.  Atomic-size effect and solid solubility of multicomponent alloys , 2015 .

[40]  C. Liu,et al.  Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys , 2015 .

[41]  Steffen Neumeier,et al.  Nanoindentation studies of the mechanical properties of the μ phase in a creep deformed Re containing nickel-based superalloy , 2015 .

[42]  K. An,et al.  A precipitation-hardened high-entropy alloy with outstanding tensile properties , 2016 .

[43]  Baolong Zheng,et al.  Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy , 2016 .