A Bayesian Network Model for Interesting Itemsets
暂无分享,去创建一个
[1] Neal E. Young,et al. Greedy Set-Cover Algorithms ( 1974-1979 , Chvátal , Johnson , Lovász , Stein ) , 2015 .
[2] Jilles Vreeken,et al. Summarizing data succinctly with the most informative itemsets , 2012, TKDD.
[3] Takeaki Uno,et al. Frequent Pattern Mining , 2016, Encyclopedia of Algorithms.
[4] Nir Friedman,et al. The Bayesian Structural EM Algorithm , 1998, UAI.
[5] Bart Goethals,et al. Tiling Databases , 2004, Discovery Science.
[6] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[7] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[8] Ramakrishnan Srikant,et al. Fast algorithms for mining association rules , 1998, VLDB 1998.
[9] Vasek Chvátal,et al. A Greedy Heuristic for the Set-Covering Problem , 1979, Math. Oper. Res..
[10] PeiJian,et al. Mining Frequent Patterns without Candidate Generation , 2000 .
[11] Pauli Miettinen,et al. The Discrete Basis Problem , 2006, IEEE Transactions on Knowledge and Data Engineering.
[12] Kevin P. Murphy,et al. Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.
[13] Jilles Vreeken,et al. Slim: Directly Mining Descriptive Patterns , 2012, SDM.
[14] Szymon Jaroszewicz,et al. Interestingness of frequent itemsets using Bayesian networks as background knowledge , 2004, KDD.
[15] Jan Zima,et al. The Atlas of European Mammals , 1999 .
[16] Neal E. Young. Greedy set-cover algorithms (part 7 of Encyclopedia of Algorithms) , 2008 .
[17] Christopher D. Manning,et al. Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..
[18] Jian Pei,et al. Mining frequent patterns without candidate generation , 2000, SIGMOD '00.
[19] Tijl De Bie,et al. An Information-Theoretic Approach to Finding Informative Noisy Tiles in Binary Databases , 2010, SDM.
[20] Geoffrey I. Webb,et al. Efficient Discovery of the Most Interesting Associations , 2013, ACM Trans. Knowl. Discov. Data.
[21] Xin-She Yang,et al. Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.
[22] Reuven Bar-Yehuda,et al. A Linear-Time Approximation Algorithm for the Weighted Vertex Cover Problem , 1981, J. Algorithms.
[23] D. Heckerman,et al. ,81. Introduction , 2022 .
[24] Mohammed J. Zaki,et al. CHARM: An Efficient Algorithm for Closed Itemset Mining , 2002, SDM.
[25] Jilles Vreeken,et al. Tell me what i need to know: succinctly summarizing data with itemsets , 2011, KDD.
[26] Philippe Fournier-Viger,et al. MEIT: Memory Efficient Itemset Tree for Targeted Association Rule Mining , 2013, ADMA.
[27] Jens Vygen,et al. The Book Review Column1 , 2020, SIGACT News.
[28] Jonathan L. Shapiro,et al. Bayesian Mixture Models for Frequent Itemset Discovery , 2012, ArXiv.
[29] Nello Cristianini,et al. MINI: Mining Informative Non-redundant Itemsets , 2007, PKDD.
[30] Jilles Vreeken,et al. Krimp: mining itemsets that compress , 2011, Data Mining and Knowledge Discovery.