A NEW INCOMPRESSIBLE SMOOTHED PARTICLE HYDRODYNAMICS-IMMERSED BOUNDARY METHOD

In this article we develop a new smoothed particle hydrodynamics (SPH) method suitable for solving the incompressible Navier-Stokes equations, even with singular forces. Singular source terms are handled in a manner similar to that in the immersed boundary (IB) method of Peskin (2002). The numerical scheme implements a second-order pressure-free projection method due to Kim and Moin (1985) and completely obviates the difficulties that may be faced in prescribing Neumann pressure boundary conditions. The proposed SPH method is first tested on the planar start-up Poiseuille problem and a detailed error analysis is performed. For this problem, the results are similar whether the SPH particles are free to move or fixed on a regular grid. Our hybrid SPH-IB method is then used to calculate the dynamics of a stretched immersed elastic membrane and the advantages in this case of fixing the SPH particles, rather than allowing them to move with the fluid, are discussed.

[1]  S. Miyama,et al.  Numerical Simulation of Viscous Flow by Smoothed Particle Hydrodynamics , 1994 .

[2]  M. Minion,et al.  Accurate projection methods for the incompressible Navier—Stokes equations , 2001 .

[3]  J. Monaghan Particle methods for hydrodynamics , 1985 .

[4]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[5]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[6]  Timothy Nigel Phillips,et al.  A consistent reflected image particle approach to the treatment of boundary conditions in smoothed particle hydrodynamics , 2009 .

[7]  Rui Xu,et al.  Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach , 2009, J. Comput. Phys..

[8]  Randall J. LeVeque,et al.  An Immersed Interface Method for Incompressible Navier-Stokes Equations , 2003, SIAM J. Sci. Comput..

[9]  Romesh C. Batra,et al.  Symmetric smoothed particle hydrodynamics (SSPH) method and its application to elastic problems , 2009 .

[10]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[11]  J. Monaghan,et al.  SPH simulation of multi-phase flow , 1995 .

[12]  Charles S. Peskin,et al.  Stability and Instability in the Computation of Flows with Moving Immersed Boundaries: A Comparison of Three Methods , 1992, SIAM J. Sci. Comput..

[13]  Rui Xu,et al.  Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method , 2008, J. Comput. Phys..

[14]  L. Libersky,et al.  Smoothed Particle Hydrodynamics: Some recent improvements and applications , 1996 .

[15]  J. Monaghan SPH without a Tensile Instability , 2000 .

[16]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[17]  James J. Feng,et al.  Pressure boundary conditions for computing incompressible flows with SPH , 2011, J. Comput. Phys..

[18]  Nikolaus A. Adams,et al.  A constant-density approach for incompressible multi-phase SPH , 2009, J. Comput. Phys..

[19]  Shigeo Wada,et al.  Particle method for computer simulation of red blood cell motion in blood flow , 2006, Comput. Methods Programs Biomed..

[20]  Paul W. Cleary,et al.  Effect of rock shapes on brittle fracture using Smoothed Particle Hydrodynamics , 2010 .

[21]  Q. M. Li,et al.  Modeling Strain Rate Effect of Heterogeneous Materials Using SPH Method , 2010 .

[22]  Zhilin Li,et al.  An immersed interface method for solving incompressible viscous flows with piecewise constant viscosity across a moving elastic membrane , 2008, J. Comput. Phys..

[23]  P. Cleary,et al.  Conduction Modelling Using Smoothed Particle Hydrodynamics , 1999 .

[24]  Petros Koumoutsakos,et al.  Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows , 2002 .

[25]  Nikolaus A. Adams,et al.  An incompressible multi-phase SPH method , 2007, J. Comput. Phys..

[26]  Behzad Ataie-Ashtiani,et al.  Modified incompressible SPH method for simulating free surface problems , 2008, Journal of the Brazilian Society of Mechanical Sciences and Engineering.

[27]  N. Quinlan,et al.  Moving Boundary Problems in the Finite Volume Particle Method , 2008 .

[28]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments , 2010 .

[29]  Zhilin Li,et al.  The immersed interface method for the Navier-Stokes equations with singular forces , 2001 .

[30]  Shigeo Wada,et al.  Simulation Study on Effects of Hematocrit on Blood Flow Properties Using Particle Method , 2006 .

[31]  R. G. Owens,et al.  A mixed Brownian dynamics – SPH method for the simulation of flows of suspensions of bead-spring chains in confined geometries with hydrodynamic interaction , 2010 .

[32]  Wei Shyy,et al.  Solution Methods for the Incompressible Navier-Stokes Equations , 1998 .

[33]  Frans N. van de Vosse,et al.  An approximate projec-tion scheme for incompressible ow using spectral elements , 1996 .

[34]  Nader A. Issa,et al.  Fluid motion generated by impact , 2003 .

[35]  Frederic A. Rasio Particle Methods in Astrophysical Fluid Dynamics , 2000 .

[36]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[37]  S. Shao,et al.  INCOMPRESSIBLE SPH METHOD FOR SIMULATING NEWTONIAN AND NON-NEWTONIAN FLOWS WITH A FREE SURFACE , 2003 .

[38]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[39]  Aurèle Parriaux,et al.  A regularized Lagrangian finite point method for the simulation of incompressible viscous flows , 2008, J. Comput. Phys..

[40]  Anita T. Layton An efficient numerical method for the two-fluid Stokes equations with a moving immersed boundary , 2008 .

[41]  Fabrice Colin,et al.  Computing a null divergence velocity field using smoothed particle hydrodynamics , 2006, J. Comput. Phys..

[42]  Nikolaus A. Adams,et al.  SPH simulations of flow around a periodic array of cylinders confined in a channel , 2011 .

[43]  N. Tanaka,et al.  MICROSCOPIC-SCALE SIMULATION OF BLOOD FLOW USING SPH METHOD , 2005 .

[44]  James J. Feng,et al.  A particle-based model for the transport of erythrocytes in capillaries , 2009 .

[45]  Randall J. LeVeque,et al.  Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..

[46]  Edmond Y.M. Lo,et al.  Simulation of near-shore solitary wave mechanics by an incompressible SPH method , 2002 .

[47]  Nikolaus A. Adams,et al.  A multi-phase SPH method for macroscopic and mesoscopic flows , 2006, J. Comput. Phys..

[48]  Bertrand Alessandrini,et al.  An improved SPH method: Towards higher order convergence , 2007, J. Comput. Phys..

[49]  P. Cleary,et al.  Smooth particle hydrodynamics: status and future potential , 2007 .

[50]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[51]  Zhi Zong,et al.  Smoothed particle hydrodynamics for numerical simulation of underwater explosion , 2003 .

[52]  N. S. Barnett,et al.  Private communication , 1969 .

[53]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[54]  A. Colagrossi,et al.  Numerical simulation of interfacial flows by smoothed particle hydrodynamics , 2003 .

[55]  Huaxiong Huang,et al.  Accuracy analysis of immersed boundary method using method of manufactured solutions , 2010 .

[56]  Charles S. Peskin,et al.  Improved Volume Conservation in the Computation of Flows with Immersed Elastic Boundaries , 1993 .

[57]  R. G. Owens,et al.  A numerical study of the SPH method for simulating transient viscoelastic free surface flows , 2006 .

[58]  Azzeddine Soulaïmani,et al.  A stabilized SPH method for inviscid shallow water flows , 2005 .

[59]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[60]  J. Monaghan Smoothed particle hydrodynamics , 2005 .