Mesh-based spherical deconvolution: A flexible approach to reconstruction of non-negative fiber orientation distributions

Diffusion-weighted MRI has enabled the imaging of white matter architecture in vivo. Fiber orientations have classically been assumed to lie along the major eigenvector of the diffusion tensor, but this approach has well-characterized shortcomings in voxels containing multiple fiber populations. Recently proposed methods for recovery of fiber orientation via spherical deconvolution utilize a spherical harmonics framework and are susceptible to noise, yielding physically-invalid results even when additional measures are taken to minimize such artifacts. In this work, we reformulate the spherical deconvolution problem onto a discrete spherical mesh. We demonstrate how this formulation enables the estimation of fiber orientation distributions which strictly satisfy the physical constraints of realness, symmetry, and non-negativity. Moreover, we analyze the influence of the flexible regularization parameters included in our formulation for tuning the smoothness of the resultant fiber orientation distribution (FOD). We show that the method is robust and reliable by reconstructing known crossing fiber anatomy in multiple subjects. Finally, we provide a software tool for computing the FOD using our new formulation in hopes of simplifying and encouraging the adoption of spherical deconvolution techniques.

[1]  Andrew L. Alexander,et al.  Hybrid diffusion imaging , 2007, NeuroImage.

[2]  Thomas R. Knösche,et al.  Parametric spherical deconvolution: Inferring anatomical connectivity using diffusion MR imaging , 2007, NeuroImage.

[3]  D L Buckley,et al.  Visualization of neural tissue water compartments using biexponential diffusion tensor MRI , 2001, Magnetic resonance in medicine.

[4]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[5]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[6]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[7]  Rachid Deriche,et al.  Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions , 2009, IEEE Transactions on Medical Imaging.

[8]  P. Basser,et al.  New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter , 2004, Magnetic resonance in medicine.

[9]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[10]  Guy B. Williams,et al.  Inference of multiple fiber orientations in high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[11]  A. Anderson Measurement of fiber orientation distributions using high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[12]  A. Iusem On the convergence properties of the projected gradient method for convex optimization , 2003 .

[13]  L. Frank Characterization of anisotropy in high angular resolution diffusion‐weighted MRI , 2002, Magnetic resonance in medicine.

[14]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[15]  Arthur W. Toga,et al.  Effi cient , distributed and interactive neuroimaging data analysis using the LONI Pipeline , 2009 .

[16]  Christophe Lenglet,et al.  ODF reconstruction in q-ball imaging with solid angle consideration , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[17]  A. Toga,et al.  The tensor distribution function , 2009, Magnetic resonance in medicine.

[18]  S. Maier,et al.  Normal brain and brain tumor: multicomponent apparent diffusion coefficient line scan imaging. , 2001, Radiology.

[19]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[20]  S. Arridge,et al.  Detection and modeling of non‐Gaussian apparent diffusion coefficient profiles in human brain data , 2002, Magnetic resonance in medicine.

[21]  Isabelle Bloch,et al.  Towards inference of human brain connectivity from MR diffusion tensor data , 2001, Medical Image Anal..

[22]  T. Freund,et al.  Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells , 2001, Neuroscience.

[23]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[24]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[25]  Duan Xu,et al.  Q‐ball reconstruction of multimodal fiber orientations using the spherical harmonic basis , 2006, Magnetic resonance in medicine.

[26]  Carl-Fredrik Westin,et al.  Geometrically constrained two-tensor model for crossing tracts in DWI. , 2006, Magnetic resonance imaging.

[27]  Mariano Rivera,et al.  Diffusion Basis Functions Decomposition for Estimating White Matter Intravoxel Fiber Geometry , 2007, IEEE Transactions on Medical Imaging.

[28]  Mark J. Lowe,et al.  An objective method for regularization of fiber orientation distributions derived from diffusion-weighted MRI , 2007, NeuroImage.

[29]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[30]  Arthur W Toga,et al.  The LONI Pipeline Processing Environment , 2003, NeuroImage.

[31]  B. Pakkenberg,et al.  Neocortical neuron number in humans: Effect of sex and age , 1997, The Journal of comparative neurology.

[32]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[33]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[34]  Daniel C. Alexander,et al.  Maximum Entropy Spherical Deconvolution for Diffusion MRI , 2005, IPMI.

[35]  D. Parker,et al.  Analysis of partial volume effects in diffusion‐tensor MRI , 2001, Magnetic resonance in medicine.

[36]  Chun-Hung Yeh,et al.  Resolving crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted imaging phantom data , 2008, NeuroImage.

[37]  Peter J. Bickel,et al.  The Earth Mover's distance is the Mallows distance: some insights from statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[38]  Baba C. Vemuri,et al.  Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT) , 2006, NeuroImage.

[39]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[40]  Daniel C. Alexander,et al.  Persistent Angular Structure: New Insights from Diffusion MRI Data. Dummy Version , 2003, IPMI.