Isotopic fingerprints of recycled eclogite facies sediments in the generation of the Huanglongpu carbonatite, central China

[1]  Xuefa Shi,et al.  Geochemical and mineralogical characteristics of deep-sea sediments from the western North Pacific Ocean: Constraints on the enrichment processes of rare earth elements , 2021 .

[2]  R. Hu,et al.  Genesis of carbonatite and associated U–Nb–REE mineralization at Huayangchuan, Central China: Insights from mineral paragenesis, chemical and Sr-Nd-C-O isotopic compositons of calcite , 2021, Ore Geology Reviews.

[3]  Q. Shan,et al.  B–Sr–Nd–Pb isotopic constraints on the origin of the Maoniuping alkaline syenite–carbonatite complex, SW China , 2021 .

[4]  Z. Benkő,et al.  Combined petrography, noble gas, stable isotope and fluid inclusion chemistry of carbonatites from Uganda: Implications for the origin of the carbonatite melt in continental rift setting , 2021 .

[5]  F. Pirajno,et al.  Types of carbonatites: Geochemistry, genesis and mantle sources , 2021 .

[6]  D. Groves,et al.  Subduction: The recycling engine room for global metallogeny , 2021, Ore Geology Reviews.

[7]  K. Zaw,et al.  Origin of the giant Luziyuan Zn-Pb-Fe(-Cu) distal skarn deposit, Baoshan block, SE Tibet: Constraints from Pb–Sr isotopes, calcite C–O isotopes, trace elements and Sm–Nd dating , 2021 .

[8]  H. Strauss,et al.  Origins of kimberlites and carbonatites during continental collision – Insights beyond decoupled Nd-Hf isotopes , 2020 .

[9]  T. Tsujimori,et al.  Eclogites in Different Tectonic Settings , 2020 .

[10]  Martin L. Smith,et al.  The role of sulfate-rich fluids in heavy rare earth enrichment at the Dashigou carbonatite deposit, Huanglongpu, China , 2019, Mineralogical Magazine.

[11]  F. Castorina,et al.  Italian carbonatite system: From mantle to ore-deposit , 2019, Ore Geology Reviews.

[12]  T. Elliott,et al.  Molybdenum systematics of subducted crust record reactive fluid flow from underlying slab serpentine dehydration , 2019, Nature Communications.

[13]  T. Plank,et al.  Subducting carbon , 2019, Nature.

[14]  Shao‐Yong Jiang,et al.  Evolution of the carbonatite Mo-HREE deposits in the Lesser Qinling Orogen: Insights from in situ geochemical investigation of calcite and sulfate , 2019, Ore Geology Reviews.

[15]  Jun Yan,et al.  Trace elements and C-O isotopes of calcite from Carlin-type gold deposits in the Youjiang Basin, SW China: Constraints on ore-forming fluid compositions and sources , 2019, Ore Geology Reviews.

[16]  T. Otake,et al.  Magmatic-Hydrothermal Processes Associated with Rare Earth Element Enrichment in the Kangankunde Carbonatite Complex, Malawi , 2019, Minerals.

[17]  Okay Çimen,et al.  Combined boron, radiogenic (Nd, Pb, Sr), stable (C, O) isotopic and geochemical investigations of carbonatites from the Blue River Region, British Columbia (Canada): Implications for mantle sources and recycling of crustal carbon , 2019 .

[18]  Richard C. Bayless,et al.  Mineralogical and geochemical characteristics of the Miaoya REE prospect, Qinling orogenic Belt, China: Insights from Sr-Nd-C-O isotopes and LA-ICP-MS mineral chemistry , 2019, Ore Geology Reviews.

[19]  Yong‐Fei Zheng Subduction zone geochemistry , 2019, Geoscience Frontiers.

[20]  Okay Çimen,et al.  Boron, carbon, oxygen and radiogenic isotope investigation of carbonatite from the Miaoya complex, central China: Evidences for late-stage REE hydrothermal event and mantle source heterogeneity , 2018, Lithos.

[21]  J. Halla Pb isotopes – A multi-function tool for assessing tectonothermal events and crust-mantle recycling at late Archaean convergent margins , 2018, Lithos.

[22]  Wei Chen,et al.  Radiogenic Pb reservoir contributes to the rare earth element (REE) enrichment in South Qinling carbonatites , 2018, Chemical Geology.

[23]  Yan Liu,et al.  Development of REE mineralization in the giant Maoniuping deposit (Sichuan, China): insights from mineralogy, fluid inclusions, and trace-element geochemistry , 2018, Mineralium Deposita.

[24]  M. Brtnický,et al.  The origin of secondary heavy rare earth element enrichment in carbonatites: Constraints from the evolution of the Huanglongpu district, China , 2018 .

[25]  K. Dokukina,et al.  Melting of eclogite facies sedimentary rocks in the Belomorian Eclogite Province, Russia , 2017 .

[26]  W. Dawes,et al.  REE minerals at the Songwe Hill carbonatite, Malawi: HREE-enrichment in late-stage apatite , 2017 .

[27]  A. Anbar,et al.  The Stable Isotope Geochemistry of Molybdenum , 2017 .

[28]  J. Kynický,et al.  Origin of unusual HREE-Mo-rich carbonatites in the Qinling orogen, China , 2016, Scientific Reports.

[29]  S. Poli Melting carbonated epidote eclogites: carbonatites from subducting slabs , 2016, Progress in Earth and Planetary Science.

[30]  S. König,et al.  Molybdenum isotope systematics in subduction zones , 2016 .

[31]  S. Kohn,et al.  Slab melting as a barrier to deep carbon subduction , 2016, Nature.

[32]  Yunpeng Dong,et al.  Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China , 2016 .

[33]  M. Kohn,et al.  The Global Range of Subduction Zone Thermal Structures from Exhumed Blueschists and Eclogites: Rocks Are Hotter than Models , 2015 .

[34]  Yuling Xie,et al.  Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments , 2015, Scientific Reports.

[35]  J. Kynický,et al.  Experimental study of REE, Ba, Sr, Mo and W partitioning between carbonatitic melt and aqueous fluid with implications for rare metal mineralization , 2015, Contributions to Mineralogy and Petrology.

[36]  Zhou Li,et al.  Genesis of Si-rich carbonatites in Huanglongpu Mo deposit, Lesser Qinling orogen, China and significance for Mo mineralization , 2015 .

[37]  M. Santosh,et al.  Triassic tectonics and mineral systems in the Qinling Orogen, central China , 2014 .

[38]  N. Daczko,et al.  Identifying Relic Igneous Garnet and Clinopyroxene in Eclogite and Granulite, Breaksea Orthogneiss, New Zealand , 2013 .

[39]  G. Wei,et al.  Formation of the world's largest REE deposit through protracted fluxing of carbonatite by subduction-derived fluids , 2013, Scientific Reports.

[40]  Xiaoyong Yang,et al.  Geochemical characteristics of the Bayan Obo giant REE–Nb–Fe deposit: Constraints on its genesis , 2013 .

[41]  Yong‐Fei Zheng Metamorphic chemical geodynamics in continental subduction zones , 2012 .

[42]  F. Wall,et al.  Rare Earth Elements: Minerals, Mines, Magnets (and More) , 2012 .

[43]  M. Böttcher,et al.  Mo isotope and trace element patterns of Lower Cambrian black shales in South China: Multi-proxy constraints on the paleoenvironment , 2012 .

[44]  Zhou Yan Trace element geochemical characteristics of the Shuigoukou Formation black rock series in Shanyang area of the Qinling Mountains and their indication significance for sedimentation-mineralization , 2012 .

[45]  J. Kynický,et al.  The origin of enriched mantle beneath North China block: Evidence from young carbonatites , 2011 .

[46]  Kui-Feng Yang,et al.  Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, North China: Constraints for the mechanism of super accumulation of rare earth elements , 2011 .

[47]  Shirong Liu,et al.  Molybdenum isotopic records across the Precambrian-Cambrian boundary , 2011 .

[48]  J. Kynický,et al.  A unique Mo deposit associated with carbonatites in the Qinling orogenic belt, central China , 2010 .

[49]  K. Bell,et al.  Source of parental melts to carbonatites–critical isotopic constraints , 2010 .

[50]  R. Jongens,et al.  Plutonic rocks of Western Fiordland, New Zealand: Field relations, geochemistry, correlation, and nomenclature , 2009 .

[51]  B. Moine,et al.  Trace element partitioning during partial melting of carbonated eclogites , 2009 .

[52]  Huang Dianhao Geological and Geochemical Characteristics,Metallogenetic Mechanism and Tectonic Setting of Carbonatite Vein-Type Mo(Pb) Deposits in the East Qinling Molybdenum Ore Belt , 2009 .

[53]  Q. Liang,et al.  Geochemical characteristics and tectonic setting of ore-bearing carbonatites in Hunglongpu Mo ore field. , 2009 .

[54]  Zhilong Huang,et al.  U-Pb zircon age, geochemical and isotopic characteristics of carbonatite and syenite complexes from the Shaxiongdong, China , 2008 .

[55]  Stephen B. Castor,et al.  THE MOUNTAIN PASS RARE-EARTH CARBONATITE AND ASSOCIATED ULTRAPOTASSIC ROCKS, CALIFORNIA , 2008 .

[56]  C. Szabó,et al.  LA-ICP-MS study of apatite- and K feldspar-hosted primary carbonatite melt inclusions in clinopyroxenite xenoliths from lamprophyres, Hungary: Implications for significance of carbonatite melts in the Earth’s mantle , 2008 .

[57]  Zhilong Huang,et al.  Flat rare earth element patterns as an indicator of cumulate processes in the Lesser Qinling carbonatites, China , 2007 .

[58]  J. Mavrogenes,et al.  Experimental constraints on element mobility from subducted sediments using high-P synthetic fluid/melt inclusions , 2007 .

[59]  H. Fan,et al.  Fluid unmixing/immiscibility as an ore-forming process in the giant REE–Nb–Fe deposit, Inner Mongolian, China: Evidence from fluid inclusions , 2006 .

[60]  R. H. Mitchell CARBONATITES AND CARBONATITES AND CARBONATITES , 2005 .

[61]  A. Woolley,et al.  Extrusive carbonatites: A brief review , 2005 .

[62]  M. Lustrino How the delamination and detachment of lower crust can influence basaltic magmatism , 2005 .

[63]  G. Gudfinnsson,et al.  Continuous Gradations among Primary Carbonatitic, Kimberlitic, Melilititic, Basaltic, Picritic, and Komatiitic Melts in Equilibrium with Garnet Lherzolite at 3–8 GPa , 2005 .

[64]  S. Hart,et al.  Major and trace element composition of the depleted MORB mantle (DMM) , 2005 .

[65]  M. Hirschmann,et al.  High-pressure Partial Melting of Mafic Lithologies in the Mantle , 2004 .

[66]  M. Hirschmann,et al.  Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions , 2004 .

[67]  Hong‐fu Zhang,et al.  Geochemical and isotopic investigation of the Laiwu–Zibo carbonatites from western Shandong Province, China, and implications for their petrogenesis and enriched mantle source , 2004 .

[68]  T. Hammouda High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle , 2003 .

[69]  L. Ratschbacher,et al.  Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history , 2003 .

[70]  Liu Congqiang,et al.  Geochemistry of carbonatites in Maoniuping REE deposit, Sichuan Province, China , 2003 .

[71]  Bin Chen,et al.  Geochemistry of late Mesozoic lamprophyre dykes from the Taihang Mountains, north China, and implications for the sub-continental lithospheric mantle , 2003, Geological Magazine.

[72]  R. Shinjo,et al.  Origin of mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? , 2002 .

[73]  P. Deines The carbon isotope geochemistry of mantle xenoliths , 2002 .

[74]  C. Devey,et al.  The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot , 2002 .

[75]  P. V. Keken,et al.  Middle Archean continent formation by crustal delamination , 2001 .

[76]  G. Tilton,et al.  Nd, Pb and Sr Isotopic Compositions of East African Carbonatites: Evidence for Mantle Mixing and Plume Inhomogeneity , 2001 .

[77]  N. Sleep,et al.  Carbon dioxide cycling and implications for climate on ancient Earth , 2001 .

[78]  G. Jenner,et al.  Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas , 2000 .

[79]  J. Eiler,et al.  Oxygen-isotope evidence for recycled crust in the sources of mid-ocean-ridge basalts , 2000, Nature.

[80]  Mao Jingwen,et al.  Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance , 1999 .

[81]  C. Floss,et al.  Geochemistry, petrology, and cooling history of 14161,7373: A plutonic lunar sample with textural evidence of granitic-fraction separation by silicate-liquid immiscibility , 1999 .

[82]  D. Dingwell,et al.  Trace Element Partitioning in Immiscible Silicate–Carbonate Liquid Systems: an Initial Experimental Study Using a Centrifuge Autoclave , 1998 .

[83]  T. Vennemann,et al.  Crustal contamination and fluid/rock interaction in the carbonatites of Fuerteventura (Canary Islands, Spain): A C, O, H isotope study , 1998 .

[84]  S. Goldstein,et al.  Geochemical and Nd, Pb, and Sr Isotope Data from Deccan Alkaline Complexes— Inferences for Mantle Sources and Plume-Lithosphere Interaction , 1998 .

[85]  K. Johnson Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures , 1998 .

[86]  K. Putirka Garnet + liquid equilibrium , 1998 .

[87]  Charles H. Langmuir,et al.  The chemical composition of subducting sediment and its consequences for the crust and mantle , 1998 .

[88]  J. Morgan,et al.  Highly precise and accurate Re-Os ages for molybdenite from the East Qinling molybdenum belt, shaanxi Province, China , 1997 .

[89]  E. Hegner,et al.  Nd, Sr, and Pb isotopic evidence for diverse lithospheric mantle sources of East African Rift carbonatites , 1997 .

[90]  A. Hofmann,et al.  Mantle geochemistry: the message from oceanic volcanism , 1997, Nature.

[91]  T. Taniguchi,et al.  In-situ measurement of viscosity and density of carbonate melts at high pressure , 1996 .

[92]  M. Bau Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect , 1996 .

[93]  B. Harte,et al.  Determination of partition coefficients between apatite, clinopyroxene, amphibole, and melt in natural spinel lherzolites from Yemen: Implications for wet melting of the lithospheric mantle , 1996 .

[94]  R. Sweeney Carbonatite melt compositions in the Earth's mantle , 1994 .

[95]  G. Tilton,et al.  Sr-Nd-Pb isotope relationships in Late Archean carbonatites and alkaline complexes: Applications to the geochemical evolution of Archean mantle , 1994 .

[96]  J. Wolff Physical properties of carbonatite magmas inferred from molten salt data, and application to extraction patterns from carbonatite–silicate magma chambers , 1994, Geological Magazine.

[97]  J. Valley,et al.  Extraction and carbon isotope analysis of CO2 from scapolite in deep crustal granulites and xenoliths , 1994 .

[98]  V. Samoilov The main geochemical features of carbonatites , 1991 .

[99]  N. Hodgson,et al.  Magma sources of the Cape Verdes archipelago: Isotopic and trace element constraints , 1988 .

[100]  M. McCulloch,et al.  SmNd isotopic systematics of Enderby Land granulites and evidence for the redistribution of Sm and Nd during metamorphism , 1984 .

[101]  S. Goldstein,et al.  A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems , 1984 .

[102]  S. Hart A large-scale isotope anomaly in the Southern Hemisphere mantle , 1984, Nature.

[103]  A. Byrnes,et al.  Carbonation of peridotites and decarbonation of siliceous dolomites represented in the system CaO-MgO-SiO2-CO2 to 30 kbar , 1983 .

[104]  C. Kendall,et al.  Comparison of stable isotope reference samples , 1983, Nature.

[105]  J. Blenkinsop,et al.  Evidence from Sr isotopes for long-lived heterogeneities in the upper mantle , 1982, Nature.

[106]  B. Pierson,et al.  The control of cathodoluminescence in dolomite by iron and manganese , 1981 .

[107]  G. Wasserburg,et al.  Sm-Nd isotopic evolution of chondrites , 1980 .

[108]  H. Taylor,et al.  Oxygen and carbon isotope studies of carbonatites from the Laacher See district, West Germany and the Alno district, Sweden. , 1967 .