In vitro mesenchymal stem cell response to a CO2 laser modified polymeric material.

[1]  Pierre-Alexis Mouthuy,et al.  Translating Regenerative Biomaterials Into Clinical Practice , 2016, Journal of cellular physiology.

[2]  D. Kaufman,et al.  Pluripotent stem cell applications for regenerative medicine , 2015, Current opinion in organ transplantation.

[3]  G. Stan,et al.  Superior biofunctionality of dental implant fixtures uniformly coated with durable bioglass films by magnetron sputtering. , 2015, Journal of the mechanical behavior of biomedical materials.

[4]  M. Hinds,et al.  In vitro and ex vivo hemocompatibility of off-the-shelf modified poly(vinyl alcohol) vascular grafts. , 2015, Acta biomaterialia.

[5]  W. Whang,et al.  Surface characteristics and biofunctionality of a novel high-performance, hydrophilic Jeffamine-added fluoro-containing polyimide for biomedical applications , 2015, Journal of Polymer Research.

[6]  J. Lawrence,et al.  Laser surface engineering: Processes and applications , 2014 .

[7]  T. Bahners,et al.  Laser Surface Modification and Adhesion , 2014 .

[8]  J. Lawrence,et al.  Osteoblast cell response to a CO2 laser modified polymeric material , 2012 .

[9]  L. Meisner,et al.  Effect of Silicon, Titanium, and Zirconium Ion Implantation on NiTi Biocompatibility , 2012 .

[10]  Vaclav Svorcik,et al.  Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. , 2011, Biotechnology advances.

[11]  Jonathan Lawrence,et al.  Wettability and osteoblast cell response modulation through UV laser processing of nylon 6,6 , 2011 .

[12]  E. Biazar,et al.  The relationship between cellular adhesion and surface roughness in polystyrene modified by microwave plasma radiation , 2011, International journal of nanomedicine.

[13]  Ke Yang,et al.  Effect of nitrogen on blood compatibility of nickel-free high nitrogen stainless steel for biomaterial , 2010 .

[14]  Ali Khademhosseini,et al.  Directed 3D cell alignment and elongation in microengineered hydrogels. , 2010, Biomaterials.

[15]  Antonio Carlos Guastaldi,et al.  Evaluation of titanium implants with surface modification by laser beam. Biomechanical study in rabbit tibias. , 2009, Brazilian oral research.

[16]  D. Morgan,et al.  Interaction of CO2 laser-modified nylon with osteoblast cells in relation to wettability , 2009 .

[17]  K. Yao,et al.  Surface characterization and biocompatibility of micro- and nano-hydroxyapatite/chitosan-gelatin network films , 2009 .

[18]  L. Engebretsen,et al.  Mesenchymal stem cell-based therapy for cartilage repair: a review , 2009, Knee Surgery, Sports Traumatology, Arthroscopy.

[19]  Janos Vörös,et al.  Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients. , 2007, Biomaterials.

[20]  Wilhelm Pfleging,et al.  Laser-assisted modification of polystyrene surfaces for cell culture applications , 2007 .

[21]  Kam W Leong,et al.  Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. , 2007, Experimental cell research.

[22]  J. Alderman,et al.  The surface energy of various biomaterials coated with adhesion molecules used in cell culture. , 2007, Colloids and surfaces. B, Biointerfaces.

[23]  R. E. Jensen,et al.  Surface modification of polyamide fibers and films using atmospheric plasmas , 2006 .

[24]  D. Mills,et al.  Stem cell attachment to layer-by-layer assembled TiO2 nanoparticle thin films. , 2006, Biomaterials.

[25]  M. Terrones,et al.  Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. , 2006, Nano letters.

[26]  M. Seah,et al.  Repeatable intensity calibration of an X-ray photoelectron spectrometer , 2006 .

[27]  M. Tatoulian,et al.  Processing of polymers by plasma technologies , 2005 .

[28]  Tejal A Desai,et al.  Control of cellular organization in three dimensions using a microfabricated polydimethylsiloxane-collagen composite tissue scaffold. , 2005, Tissue engineering.

[29]  H. Mirzadeh,et al.  Influence of laser surface modifying of polyethylene terephthalate on fibroblast cell adhesion , 2003 .

[30]  Roberto S. Benson,et al.  Use of radiation in biomaterials science , 2002 .

[31]  A. Serafetinides,et al.  Ultra-violet and infra-red laser ablation studies of biocompatible polymers , 1995, Lasers in Medical Science.

[32]  J. Watts High resolution XPS of organic polymers: The Scienta ESCA 300 database. G. Beamson and D. Briggs. 280pp., £65. John Wiley & Sons, Chichester, ISBN 0471 935921, (1992) , 1993 .

[33]  D. Briggs,et al.  High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database , 1992 .

[34]  L. Hazell,et al.  The determination of uncertainties in quantitative XPS/AES and its impact on data acquisition strategy , 1992 .

[35]  D. M. Brewis,et al.  Surface Analysis and Pretreatment of Plastics and Metals , 1982 .

[36]  A. Lendlein,et al.  The interaction of adipose-derived human mesenchymal stem cells and polyether ether ketone. , 2015, Clinical hemorheology and microcirculation.

[37]  J. Lawrence,et al.  Laser Surface Treatment of a Polymeric Biomaterial: Wettability Characteristics and Osteoblast Cell Response Modulation , 2014 .

[38]  Jyotsna Dutta Majumdar,et al.  Laser-assisted fabrication of materials , 2013 .

[39]  S. Ramakrishna,et al.  Influence of electrospun Nylon 6,6 nanofibrous mats on the interlaminar properties of Gr–epoxy composite laminates , 2012 .

[40]  Y. Konttinen,et al.  Adhesion, spreading and osteogenic differentiation of mesenchymal stem cells cultured on micropatterned amorphous diamond, titanium, tantalum and chromium coatings on silicon , 2010, Journal of materials science. Materials in medicine.

[41]  Liang Hao,et al.  Laser surface treatment of bio-implant materials , 2005 .

[42]  C. Wilkinson,et al.  Reactions of cells to topography. , 1998, Journal of biomaterials science. Polymer edition.

[43]  M. Allmen Laser-beam interactions with materials , 1987 .