Beamforming using the fractional Fourier transform

We present a new method of beamforming using the fractional Fourier transform (FrFT). This method encompasses the conventional minimum mean-squared error (MMSE) beamforming in the frequency domain or spatial domain as special cases. It is especially useful for applications involving chirp signals such as signal enhancement problems with accelerating sinusoidal sources where the Doppler effect generates chirp signals and a frequency shift and active radar problems where chirp signals are transmitted. Numerical examples demonstrate the potential advantage of the proposed method over the ordinary frequency or spatial domain beamforming for a moving source scenario.

[1]  Z. Zalevsky,et al.  The Fractional Fourier Transform: with Applications in Optics and Signal Processing , 2001 .

[2]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[3]  Randy L. Haupt,et al.  Introduction to Adaptive Arrays , 1980 .

[4]  M. Fatih Erden,et al.  Repeated filtering in consecutive fractional Fourier domains and its application to signal restoration , 1999, IEEE Trans. Signal Process..

[5]  Haldun M. Ozaktas,et al.  Optimal image restoration with the fractional fourier transform , 1998 .

[6]  Robin J. Evans,et al.  Hidden Markov model multiarm bandits: a methodology for beam scheduling in multitarget tracking , 2001, IEEE Trans. Signal Process..

[7]  Imam Samil Yetik,et al.  Continuous and discrete fractional Fourier domain decomposition , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[8]  B. Widrow,et al.  Adaptive antenna systems , 1967 .

[9]  Andrew P. Sage,et al.  On Sonar Signal Analysis , 1970, IEEE Transactions on Aerospace and Electronic Systems.

[10]  Levent Onural,et al.  Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms , 1994 .

[11]  O. L. Frost,et al.  An algorithm for linearly constrained adaptive array processing , 1972 .

[12]  B.D. Van Veen,et al.  Beamforming: a versatile approach to spatial filtering , 1988, IEEE ASSP Magazine.

[13]  S. Applebaum,et al.  Adaptive arrays with main beam constraints , 1976 .

[14]  M. Fatih Erden,et al.  Synthesis of general linear systems with repeated filtering in consecutive fractional Fourier domains , 1998 .

[15]  Khaled H. Hamed,et al.  Time-frequency analysis , 2003 .

[16]  H M Ozaktas,et al.  Perspective projections in the space-frequency plane and fractional Fourier transforms. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  M. J. Rycroft,et al.  Radar signals: An introduction to theory and application , 1995 .

[18]  M. F. Erden,et al.  Synthesis of mutual intensity distributions using the fractional Fourier Transform , 1996 .

[19]  Levent Onural,et al.  Optimal filtering in fractional Fourier domains , 1997, IEEE Trans. Signal Process..

[20]  Orhan Arikan,et al.  The fractional Fourier domain decomposition , 1999, Signal Process..

[21]  Gozde Bozdagi Akar,et al.  Digital computation of the fractional Fourier transform , 1996, IEEE Trans. Signal Process..