Design and development of a galvanometer inspired dual beam optical coherence tomography system for flow velocity quantification of the microvasculature

This paper reports initial experimentation of a dual beam flow velocity estimation setup based on optical coherence tomography (OCT) for biomedical applications. The proposed work incorporates a low cost switching mechanism (rotating galvanometer mirror) for optical signal discrimination between adjacent fiber channels enabling quasisimultaneous multiple specimen scanning. A cascaded interferometric design is used with two sample output arms orientated in parallel to eachother. A cross-correlation computation between these two parallel sample beams yields a relative time delay, enabling assessment and quantification of flow velocities.

[1]  T Klyscz,et al.  Local cold exposure test with a new arterial photoplethysmographic sensor in healthy controls and patients with secondary Raynaud's phenomenon. , 1999, Microvascular research.

[2]  Osami Sasaki,et al.  A new spectral calibration method for Fourier domain optical coherence tomography , 2010 .

[3]  Enock Jonathan Dual reference arm low-coherence interferometer-based reflectometer for optical coherence tomography (OCT) application , 2005 .

[4]  C. Thalhammer,et al.  Rapid improvement of nailfold capillaroscopy after intense immunosuppression for systemic sclerosis and mixed connective tissue disease , 2008, Annals of the rheumatic diseases.

[5]  Edmund Koch,et al.  Transverse motion as a source of noise and reduced correlation of the Doppler phase shift in spectral domain OCT. , 2009, Optics express.

[6]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[7]  Yuuki Watanabe,et al.  Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units. , 2010, Applied optics.

[8]  M. Cerinic,et al.  Vascular complications of scleroderma. , 2007, Autoimmunity reviews.

[9]  Ruikang K. Wang,et al.  Three dimensional optical angiography. , 2007, Optics express.

[10]  Theo Lasser,et al.  Dual beam heterodyne Fourier domain optical coherence tomography. , 2007, Optics express.

[11]  Ruikang K. Wang,et al.  Theory, developments and applications of optical coherence tomography , 2005 .

[12]  Daniel X Hammer,et al.  Dual-beam Fourier domain optical Doppler tomography of zebrafish. , 2008, Optics express.

[13]  Q. Ren,et al.  Evaluation of spectrometric parameters in spectral-domain optical coherence tomography. , 2011, Applied optics.

[14]  W. Grassi,et al.  Nailfold capillary permeability in psoriatic arthritis. , 1992, Scandinavian journal of rheumatology.

[15]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[16]  Nan Zeng,et al.  Transverse flow-velocity quantification using optical coherence tomography with correlation , 2011 .

[17]  Harald Sattmann,et al.  Resolution-improved dual-beam and standard optical coherence tomography: a comparison , 2000, Graefe's Archive for Clinical and Experimental Ophthalmology.

[18]  P. Messina,et al.  Microvascular abnormalities in patients with rheumatoid arthritis. , 2006, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[19]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[20]  F. Trautinger,et al.  Capillaroscopy , 2013, Journal der Deutschen Dermatologischen Gesellschaft = Journal of the German Society of Dermatology : JDDG.

[21]  S. Kohn,et al.  Cutaneous manifestations of diabetes mellitus. , 1994, Journal of the American Academy of Dermatology.

[22]  G. Ha Usler,et al.  "Coherence radar" and "spectral radar"-new tools for dermatological diagnosis. , 1998, Journal of biomedical optics.

[23]  Inherent homogenous media dispersion compensation in frequency domain optical coherence tomography by accurate k-sampling. , 2008, Applied optics.

[24]  Alex Cable,et al.  Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography. , 2008, Journal of biomedical optics.

[25]  Shuichi Makita,et al.  High-sensitive blood flow imaging of the retina and choroid by using double-beam optical coherence angiography , 2010, BiOS.

[26]  E. Bouskela,et al.  Nailfold videocapillaroscopy in primary antiphospholipid syndrome (PAPS). , 2004, Rheumatology.

[27]  W. Drexler Ultrahigh-resolution optical coherence tomography. , 2004, Journal of biomedical optics.

[28]  Martin J. Leahy,et al.  Biophotonic methods in microcirculation imaging , 2007 .