Robust H/sub /spl infin// control design for uncertain fuzzy systems with Markovian jumps: an LMI approach

This paper investigates the problem of designing a robust output feedback controller for a class of uncertain Markovian jump nonlinear systems that guarantees the L/sub 2/-gain from an exogenous input to a regulated output is less than or equal to a prescribed value. First, we approximate this class of uncertain Markovian jump nonlinear systems by a class of uncertain Takagi-Sugeno fuzzy models with Markovian jumps. Then, based on an LMI approach, LMIbascd sufficient conditions for the uncertain Markovian jump nonlinear systems to have an H/sub /spl infin// performance are derived. An illustrative example is used to illustrate the effectiveness of the proposed design techniques.

[1]  S. Taylor DIFFUSION PROCESSES AND THEIR SAMPLE PATHS , 1967 .

[2]  W. Wonham Random differential equations in control theory , 1970 .

[3]  WILLIAM P. BLAIR,et al.  Continuous-Time Regulation of a Class of Econometric Models , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[4]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  El-Kébir Boukas,et al.  Manufacturing flow control and preventing maintenance: a stochastic control approach , 1988 .

[6]  M. Mariton,et al.  Jump Linear Systems in Automatic Control , 1992 .

[7]  Helena E. Nusse,et al.  Resolution of chaos with application to a modified Samuelson model , 1990 .

[8]  H. Chizeck,et al.  Controllability, stabilizability, and continuous-time Markovian jump linear quadratic control , 1990 .

[9]  Kazuo Tanaka,et al.  Stability analysis and design of fuzzy control systems , 1992 .

[10]  Chieh-Li Chen,et al.  Analysis and design of fuzzy control system , 1993 .

[11]  M. Fragoso,et al.  Stability Results for Discrete-Time Linear Systems with Markovian Jumping Parameters , 1993 .

[12]  Kazuo Tanaka,et al.  Stability and stabilizability of fuzzy-neural-linear control systems , 1995, IEEE Trans. Fuzzy Syst..

[13]  El-Kébir Boukas,et al.  Robust production and maintenance planning in stochastic manufacturing systems , 1995, IEEE Trans. Autom. Control..

[14]  Kazuo Tanaka,et al.  An approach to fuzzy control of nonlinear systems: stability and design issues , 1996, IEEE Trans. Fuzzy Syst..

[15]  Li-Xin Wang,et al.  A Course In Fuzzy Systems and Control , 1996 .

[16]  Kazuo Tanaka,et al.  Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H∞ control theory, and linear matrix inequalities , 1996, IEEE Trans. Fuzzy Syst..

[17]  Gang Feng,et al.  Quadratic stability analysis and design of continuous-time fuzzy control systems , 1996, Int. J. Syst. Sci..

[18]  E. Boukas,et al.  H∞-Control for Markovian Jumping Linear Systems with Parametric Uncertainty , 1997 .

[19]  El-Kébir Boukas,et al.  Stochastic stability and guaranteed cost control of discrete-time uncertain systems with Markovian jumping parameters , 1997 .

[20]  Zengqi Sun,et al.  Analysis and design of fuzzy controller and fuzzy observer , 1998, IEEE Trans. Fuzzy Syst..

[21]  M.D.S. Aliyu,et al.  H/sub /spl infin// control for Markovian jump nonlinear systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[22]  Marcelo C. M. Teixeira,et al.  Stabilizing controller design for uncertain nonlinear systems using fuzzy models , 1999, IEEE Trans. Fuzzy Syst..

[23]  Vasile Dragan,et al.  Control of singularly perturbed systems with Markovian jump parameters: an Hinfinity approach , 1999, Autom..

[24]  Stanislaw H. Zak,et al.  Stabilizing fuzzy system models using linear controllers , 1999, IEEE Trans. Fuzzy Syst..

[25]  E. K. Boukas,et al.  Robust H∞ control for Markovian jump nonlinear systems , 2000 .

[26]  Bor-Sen Chen,et al.  Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach , 2000, IEEE Trans. Fuzzy Syst..

[27]  P. Shi,et al.  Stabilisation of a class of nonlinear time-delay systems using fuzzy models , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[28]  P. Shi,et al.  Fuzzy H∞ output feedback control of nonlinear systems under sampled measurements , 2001, IEEE Conference on Decision and Control.

[29]  Sing Kiong Nguang,et al.  Fuzzy observer-based controller design for singularly perturbed nonlinear systems: an LMI approach , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[30]  Peng Shi,et al.  H∞ fuzzy output feedback control design for nonlinear systems: an LMI approach , 2003, IEEE Trans. Fuzzy Syst..

[31]  Warren B. Powell,et al.  Hierarchical Decision Making , 2004 .