Thermal Properties of Co/Au Nanoalloys and Comparison of Different Computer Simulation Techniques

In this work we investigate the performance of several simulation techniques, i.e., Canonical Molecular Dynamics, Canonical Monte Carlo, and the Optimized Multicanonical Monte Carlo, to study melting-like transitions of Co/Au nanoalloys that are compared to those of pure Co and Au clusters of the same size. A surprising enhancement in the thermal stability of core/shell Co13Au42 is observed compared to both pure clusters of the same size and shape. The novel property is analyzed using energetic and vibrational contributions throughout a detailed microscopic dynamic analysis.

[1]  M. José-Yacamán,et al.  The Co-Au interface in bimetallic nanoparticles: a high resolution STEM study. , 2010, Nanoscale.

[2]  D. Bochicchio,et al.  Size-dependent transition to high-symmetry chiral structures in AgCu, AgCo, AgNi, and AuNi nanoalloys. , 2010, Nano letters.

[3]  R. Ramanujan,et al.  Anti-cancer drug loaded iron-gold core-shell nanoparticles (Fe@Au) for magnetic drug targeting. , 2010, Journal of nanoscience and nanotechnology.

[4]  K. Krishnan Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy , 2010, IEEE Transactions on Magnetics.

[5]  G. N. Makarov,et al.  Experimental methods for determining the melting temperature and the heat of melting of clusters and nanoparticles , 2010 .

[6]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.

[7]  G. Rossi,et al.  Searching for low-energy structures of nanoparticles: a comparison of different methods and algorithms , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[8]  F. García-Vidal,et al.  Focus on Plasmonics , 2008 .

[9]  M. K. Fenwick A direct multiple histogram reweighting method for optimal computation of the density of states. , 2008, The Journal of chemical physics.

[10]  M. Mirjalili,et al.  Prediction of nanoparticles’ size-dependent melting temperature using mean coordination number concept , 2008 .

[11]  R. Johnston,et al.  Nanoalloys: from theory to applications of alloy clusters and nanoparticles. , 2008, Chemical reviews.

[12]  C. Champeaux,et al.  Growth of Co isolated clusters in the gas phase: Experiment and molecular dynamics simulations , 2008 .

[13]  J. Straub,et al.  Statistical temperature molecular dynamics: application to coarse-grained beta-barrel-forming protein models. , 2007, The Journal of chemical physics.

[14]  K. Krishnan,et al.  Synthesis and Characterization of Magnetic-Optical Co−Au Core−Shell Nanoparticles , 2007 .

[15]  Dwight G Nishimura,et al.  FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents , 2006, Nature materials.

[16]  Wenchuan Wang,et al.  Thermal behavior of core-shell and three-shell layered clusters: Melting of Cu 1 Au 54 and Cu 12 Au 43 , 2006 .

[17]  Hongwei Liao,et al.  Biomedical applications of plasmon resonant metal nanoparticles. , 2006, Nanomedicine.

[18]  Giulia Rossi,et al.  Global optimization by excitable walkers , 2006 .

[19]  F. Calvo,et al.  Performances of Wang-Landau algorithms for continuous systems. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Arezou A Ghazani,et al.  Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. , 2006, Nano letters.

[21]  Min Gyu Kim,et al.  Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles. , 2005, Journal of the American Chemical Society.

[22]  F. Baletto,et al.  Single impurity effect on the melting of nanoclusters. , 2005, Physical review letters.

[23]  P. Balbuena,et al.  Molecular dynamics studies of phonon spectra in mono- and bimetallic nanoclusters , 2005 .

[24]  M. I. Rojas Off lattice Monte Carlo simulation study for different metal adlayers onto (1 1 1) substrates , 2004 .

[25]  F Baletto,et al.  Magic polyicosahedral core-shell clusters. , 2004, Physical review letters.

[26]  Min Gyu Kim,et al.  Characterization of superparamagnetic "core-shell" nanoparticles and monitoring their anisotropic phase transition to ferromagnetic "solid solution" nanoalloys. , 2004, Journal of the American Chemical Society.

[27]  C. O'connor,et al.  Synthesis and magnetic properties of Au-coated amorphous Fe20Ni80 nanoparticles , 2004 .

[28]  D. Huse,et al.  Optimizing the ensemble for equilibration in broad-histogram Monte Carlo simulations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  William A. Goddard,et al.  The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of Lennard-Jones fluids , 2003 .

[30]  B. Berg Multicanonical simulations step by step , 2002, cond-mat/0206333.

[31]  J. Cheon,et al.  Synthesis of "solid solution" and "core-shell" type cobalt--platinum magnetic nanoparticles via transmetalation reactions. , 2001, Journal of the American Chemical Society.

[32]  D. Landau,et al.  Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.

[33]  H. Bulou,et al.  PT/CO(0001) SUPERSTRUCTURES IN THE SUBMONOLAYER RANGE : A TIGHT-BINDING QUENCHED-MOLECULAR-DYNAMICS STUDY , 1999 .

[34]  Chad A. Mirkin,et al.  Programmed Materials Synthesis with DNA. , 1999, Chemical reviews.

[35]  D. Sánchez-Portal,et al.  Lowest Energy Structures of Gold Nanoclusters , 1998 .

[36]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[37]  Hesselbo,et al.  Monte Carlo simulation and global optimization without parameters. , 1995, Physical review letters.

[38]  Rosato,et al.  Tight-binding potentials for transition metals and alloys. , 1993, Physical review. B, Condensed matter.

[39]  M. Hasegawa,et al.  A theory of melting in metallic small particles , 1980 .

[40]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[41]  Katsuhiko Ariga,et al.  A Special Section on Nanocomposites and Nanoporous Materials , 2010 .

[42]  Julius Jellinek,et al.  Theory of Atomic and Molecular Clusters , 1999 .