Natural photonics for industrial inspiration

There are two considerations for optical biomimetics: the diversity of submicrometre architectures found in the natural world, and the industrial manufacture of these. A review exists on the latter subject, where current engineering methods are considered along with those of the natural cells. Here, on the other hand, I will provide a modern review of the different categories of reflectors and antireflectors found in animals, including their optical characterization. The purpose of this is to inspire designers within the $2 billion annual optics industry.

[1]  M F Land,et al.  The physics and biology of animal reflectors. , 1972, Progress in biophysics and molecular biology.

[2]  K. Kertész,et al.  Comments on the systematics and natural history of aveexcrenota, a genus of rare andean eumaeine lycaenidae (Lepidoptera) , 2006 .

[3]  C. Raman The origin of the colours in the plumage of birds , 1934 .

[4]  Akihiro Yoshida,et al.  Nanoprotuberance Array in the Transparent Wing of a Hawkmoth, Cephonodes hylas , 1996 .

[5]  S. Caveney,et al.  SCARABAEID BEETLE EXOCUTICLE AS AN OPTICAL ANALOGUE OF CHOLESTERIC LIQUID CRYSTALS , 1969, Biological reviews of the Cambridge Philosophical Society.

[6]  Andrew R. Parker,et al.  Solar–absorber antireflector on the eye of an Eocene fly (45 Ma) , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[7]  J. R. Sambles,et al.  Structural colour: Colour mixing in wing scales of a butterfly , 2000, Nature.

[8]  T. Schultz Role of Structural Colors in Predator Avoidance by Tiger Beetles of the Genus Cincindela (Coleoptera: Cincindelidae) , 1986 .

[9]  A. Parker,et al.  A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990) , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[10]  Ross C. McPhedran,et al.  Structural colours through photonic crystals , 2003 .

[11]  Michael F. Land,et al.  Animal Eyes with Mirror Optics , 1978 .

[12]  P. Verrell Illegitimate exploitation of sexual signalling systems and the origin of species , 1991 .

[13]  A. Parker Discovery of functional iridescence and its coevolution with eyes in the phylogeny of Ostracoda (Crustacea) , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[14]  Alain Cornet,et al.  Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Rodolfo H. Torres,et al.  Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[16]  Krisztián Kertész,et al.  Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Ruby Northup,et al.  Couleurs et pigments des êtres vivants , 1931 .

[18]  Rodolfo H. Torres,et al.  Coherent light scattering by blue feather barbs , 1998, Nature.

[19]  A. Parker Light-Reflection Strategies , 1999, American Scientist.

[20]  P. Herring Reflective systems in aquatic animals , 1994 .

[21]  Andrew R. Parker,et al.  Biomimetics of photonic nanostructures. , 2007, Nature nanotechnology.

[22]  Andrew R. Parker,et al.  515 million years of structural colour , 2000 .

[23]  E. Denton,et al.  Review lecture: on the organization of reflecting surfaces in some marine animals. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[24]  Kurt Nassau,et al.  The physics and chemistry of color : the fifteen causes of color / Kurt Nassau , 1983 .

[25]  Younan Xia,et al.  Self‐Assembly Approaches to Three‐Dimensional Photonic Crystals , 2001 .

[26]  C. W. Mason,et al.  Structural Colors in Insects. II , 1926 .

[27]  J. Zi,et al.  Coloration strategies in peacock feathers , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Jean-Pol Vigneron,et al.  Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera). , 2005 .

[29]  L. Biró,et al.  Microstructures and nanostructures of high Andean Penaincisalia lycaenid butterfly scales (Lepidoptera: Lycaenidae): descriptions and interpretations , 2005 .

[30]  Mckenzie,et al.  Multilayer reflectors in animals using green and gold beetles as contrasting examples , 1998, The Journal of experimental biology.

[31]  J. Partridge Light and Life in the Sea , 1989, Journal of the Marine Biological Association of the United Kingdom.

[32]  Andrew R. Parker,et al.  Structural colour: Opal analogue discovered in a weevil , 2003, Nature.

[33]  A. Parker,et al.  A unique form of light reflector and the evolution of signalling in Ovalipes (Crustacea: Decapoda: Portunidae) , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[34]  Teh-Hwa Wong,et al.  Color generation in butterfly wings and fabrication of such structures. , 2003, Optics letters.

[35]  A. Parker,et al.  Dual gratings interspersed on a single butterfly scale , 2008, Journal of The Royal Society Interface.

[36]  J. V. Sanders,et al.  Colour of Precious Opal , 1964, Nature.

[37]  Jean-Pol Vigneron,et al.  Structural origin of the colored reflections from the black-billed magpie feathers. , 2006 .

[38]  Gwynne Vevers,et al.  The nature of animal colours , 1962 .

[39]  S. Nishida,et al.  Integumental ultrastructure and color patterns in the iridescent copepods of the family Sapphirinidae (Copepoda: Poecilostomatoida) , 1994 .

[40]  D. L. Fox Animal biochromes and structural colours , 1953 .

[41]  Eli Yablonovitch,et al.  Optics: Liquid versus photonic crystals , 1999, Nature.

[42]  M. C. Hutley,et al.  The use of apodization to reduce stray light from diffraction gratings , 1982 .

[43]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light - Second Edition , 2008 .

[44]  The cause of colouration in the ctenophore Beroë cucumis , 2005, Current Biology.

[45]  Andrew R. Parker,et al.  Colour in Burgess Shale animals and the effect of light on evolution in the Cambrian , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[46]  Gary E. Loomis,et al.  Design of high-efficiency dielectric reflection gratings , 1997 .

[47]  H. Ghiradella,et al.  Structure and development of iridescent butterfly scales: Lattices and laminae , 1989, Journal of morphology.

[48]  A. Parker,et al.  Functional morphology and food habits of deep-sea copepods of the genus Cephalophanes (Calanoida: Phaennidae): perception of bioluminescence as a strategy for food detection , 2002 .

[49]  Shuichi Kinoshita,et al.  Photophysics of Structural Color in the Morpho Butterflies , 2002 .

[50]  A. Parker,et al.  The cause of 50 million-year-old colour , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[51]  A. Parker,et al.  Aphrodite's iridescence , 2001 .

[52]  Olivier Deparis,et al.  Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae). , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.